Abstract

Numerical calculations recently published [ J. Opt. Soc. Am. A 12, 340 ( 1995)] on the characteristics of modes in optical resonators containing apertures revealed unusual effects regarding modal losses and frequencies. Our attempts to reproduce the numerical calculations for the same configuration parameters did not retrieve these effects. Additional support for the validity of our calculations is presented.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Haderka, “Properties of the transverse eigenmode set in optical resonators with apertures,” J. Opt. Soc. Am. A 12, 340–345 (1995).
    [Crossref]
  2. B. Lissak, S. Ruschin, H. Kleinman, “Transverse pattern modifications in a stable apertured laser resonator,” Appl. Opt. 29, 767–771 (1990).
    [Crossref] [PubMed]
  3. M. Keselbrener, S. Ruschin, “Mode design with hole-on-axis mirrors,” Pure Appl. Opt. 3, 551–560 (1994).
    [Crossref]
  4. T. Hurvits, “Diffraction effects on degenerate transverse laser modes,” M.S. thesis (Tel Aviv University, Tel Aviv, 1995).
  5. S. Ruschin, “Transverse profile shaping of laser beams by means of aspherical mirror resonators,” in Laser Energy Distribution Profiles: Measurement and Applications, J. M. Darchuk, ed., Proc. SPIE1834, 169–175 (1992).
    [Crossref]
  6. A. E. Siegman, “Quasi fast Hankel transform,” Opt. Lett. 1, 13–15 (1977).
    [Crossref] [PubMed]
  7. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif.1986).
  8. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [Crossref] [PubMed]
  9. J. L. Remo, “Diffraction losses for symmetrically tilted plane reflectors in open resonators,” Appl. Opt. 19, 774–777 (1980).
    [Crossref] [PubMed]
  10. K. Ait-Ameur, H. Ladjouze, G. Stephan, “Diffraction effects in a resonator cavity with two nonequivalent apertures,” Appl. Opt. 34, 397–405 (1992).
    [Crossref]
  11. J. P. Tache, “Experimental determination of diffraction losses in a near-hemispherical resonator,” Opt. Quantum Electron. 16, 71 (1984).
    [Crossref]
  12. G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489 (1961).

1995 (1)

1994 (1)

M. Keselbrener, S. Ruschin, “Mode design with hole-on-axis mirrors,” Pure Appl. Opt. 3, 551–560 (1994).
[Crossref]

1992 (1)

K. Ait-Ameur, H. Ladjouze, G. Stephan, “Diffraction effects in a resonator cavity with two nonequivalent apertures,” Appl. Opt. 34, 397–405 (1992).
[Crossref]

1990 (1)

1984 (1)

J. P. Tache, “Experimental determination of diffraction losses in a near-hemispherical resonator,” Opt. Quantum Electron. 16, 71 (1984).
[Crossref]

1980 (1)

1977 (1)

1966 (1)

1961 (1)

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489 (1961).

Ait-Ameur, K.

K. Ait-Ameur, H. Ladjouze, G. Stephan, “Diffraction effects in a resonator cavity with two nonequivalent apertures,” Appl. Opt. 34, 397–405 (1992).
[Crossref]

Boyd, G. D.

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489 (1961).

Gordon, J. P.

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489 (1961).

Haderka, O.

Hurvits, T.

T. Hurvits, “Diffraction effects on degenerate transverse laser modes,” M.S. thesis (Tel Aviv University, Tel Aviv, 1995).

Keselbrener, M.

M. Keselbrener, S. Ruschin, “Mode design with hole-on-axis mirrors,” Pure Appl. Opt. 3, 551–560 (1994).
[Crossref]

Kleinman, H.

Kogelnik, H.

Ladjouze, H.

K. Ait-Ameur, H. Ladjouze, G. Stephan, “Diffraction effects in a resonator cavity with two nonequivalent apertures,” Appl. Opt. 34, 397–405 (1992).
[Crossref]

Li, T.

Lissak, B.

Remo, J. L.

Ruschin, S.

M. Keselbrener, S. Ruschin, “Mode design with hole-on-axis mirrors,” Pure Appl. Opt. 3, 551–560 (1994).
[Crossref]

B. Lissak, S. Ruschin, H. Kleinman, “Transverse pattern modifications in a stable apertured laser resonator,” Appl. Opt. 29, 767–771 (1990).
[Crossref] [PubMed]

S. Ruschin, “Transverse profile shaping of laser beams by means of aspherical mirror resonators,” in Laser Energy Distribution Profiles: Measurement and Applications, J. M. Darchuk, ed., Proc. SPIE1834, 169–175 (1992).
[Crossref]

Siegman, A. E.

A. E. Siegman, “Quasi fast Hankel transform,” Opt. Lett. 1, 13–15 (1977).
[Crossref] [PubMed]

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif.1986).

Stephan, G.

K. Ait-Ameur, H. Ladjouze, G. Stephan, “Diffraction effects in a resonator cavity with two nonequivalent apertures,” Appl. Opt. 34, 397–405 (1992).
[Crossref]

Tache, J. P.

J. P. Tache, “Experimental determination of diffraction losses in a near-hemispherical resonator,” Opt. Quantum Electron. 16, 71 (1984).
[Crossref]

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489 (1961).

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

J. P. Tache, “Experimental determination of diffraction losses in a near-hemispherical resonator,” Opt. Quantum Electron. 16, 71 (1984).
[Crossref]

Pure Appl. Opt. (1)

M. Keselbrener, S. Ruschin, “Mode design with hole-on-axis mirrors,” Pure Appl. Opt. 3, 551–560 (1994).
[Crossref]

Other (3)

T. Hurvits, “Diffraction effects on degenerate transverse laser modes,” M.S. thesis (Tel Aviv University, Tel Aviv, 1995).

S. Ruschin, “Transverse profile shaping of laser beams by means of aspherical mirror resonators,” in Laser Energy Distribution Profiles: Measurement and Applications, J. M. Darchuk, ed., Proc. SPIE1834, 169–175 (1992).
[Crossref]

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif.1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Losses as a function of limiting aperture radius for a resonator of characteristics L = 0.5 m, g1 = g2 = 0.65, λ = 1 μm. Solid curves, losses according to Ref. 1; plain dashed curve, losses according to the orthogonal collocation method; asterisks, losses according to a Fox–Li calculation based on the quasi-fast Hankel transform.

Metrics