Abstract

Both continuously tapered and discrete multilevel subwavelength grating structures are examined to determine the optimum method of designing antireflection surfaces. Continuously tapered gratings are designed with use of the optimal Klopfenstein graded index technique, while discrete multilevel stair-step gratings are designed with use of the Tschebyscheff quarter-wave synthesis technique. It is shown that a continuous design is always deeper than a discrete design. It is determined that since a subwavelength grating structure produces a bandpass surface, the high-pass (short-wave) performance of the continuous taper design cannot be realized. Therefore the discrete method of designing antireflection subwavelength gratings will always produce a shallower spatial profile or a smaller aspect ratio for any specified maximum reflection threshold level over a given passband.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription