Abstract

The electroretinogram (ERG) has been a traditional tool for the measurement and the analysis of spectral sensitivity. With the appropriate choices of stimulus and measurement conditions, the ERG permits a noninvasive examination of photopigment complement and provides the means for studying the combination of spectral signals at various locations throughout the retina. There are a number of practical problems associated with making spectral measurements with the ERG. One approach to minimizing these problems is to exploit the advantages of a flicker-photometric procedure. We summarize a method used to conduct ERG flicker photometry and illustrate a range of problems to which this technique can be successfully applied.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Armington, The Electroretinogram (Academic, New York, 1974).
  2. D. van Norren, “Electroretinographic aspects of colour vision deficiencies,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (Macmillan, London, 1991), pp. 56–63.
  3. J. Neitz, G. H. Jacobs, “Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys,” J. Opt. Soc. Am. A 1, 1175–1180 (1984).
    [CrossRef] [PubMed]
  4. C. R. Cavonius, “Color sensitive response in the human flicker-ERG,” Doc. Ophthalmol. 18, 101–113 (1964).
    [CrossRef]
  5. J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,” J. Comp. Physiol. 151, 347–352 (1983).
    [CrossRef]
  6. E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Behav. Brain Res. 8, 343–350 (1983).
    [CrossRef] [PubMed]
  7. Y. Chang, S. A. Burns, M. R. Kreitz, “Red–green flicker photometry and nonlinearities in the flicker electroretinogram,” J. Opt. Soc. Am. A 10, 1413–1422 (1993).
    [CrossRef] [PubMed]
  8. R. M. Shapley, S. Brodie, “Responses of human ERG to rapid color exchange: implications for M/L cone ratio,” Invest. Ophthalmol. Vis. Sci. 34, 911 (1993).
  9. W. W. Dawson, G. L. Trick, C. A. Litzkow, “Improved electrode for electroretinography,” Invest. Ophthalmol. Vis. Sci. 19, 988–991 (1979).
  10. A. Szel, T. Diamantstein, P. Rohlich, “Identification of blue-sensitive cones in the mammalian retina by anti-visual pigment antibody,” J. Comp. Neurol. 273, 593–602 (1988).
    [CrossRef]
  11. J. F. Deegan, G. H. Jacobs, “On the identity of the cone types of the rat retina,” Exp. Eye Res. 56, 375–377 (1993).
    [CrossRef] [PubMed]
  12. F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).
  13. G. H. Jacobs, “Color-vision polymorphisms in New World monkeys: implications for the evolution of primate trichromacy,” in New World Primates: Ecology, Evolution and Behavior, W. G. Kinzey, ed. (de Gruyter, New York, 1996).
  14. G. H. Jacobs, J. Neitz, “Inheritance of color vision in a New World monkey (Saimiri sciureus),” Proc. Natl. Acad. Sci. (USA) 84, 2545–2549 (1987).
    [CrossRef]
  15. S. M. Dawis, “Polynomial expressions of pigment nomograms,” Vision Res. 21, 1427–1430 (1981).
    [CrossRef] [PubMed]
  16. J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B 222, 373–399 (1984).
    [CrossRef]
  17. J. K. Bowmaker, G. H. Jacobs, D. H. Spiegelhalter, J. D. Mollon, “Two types of trichromatic squirrel monkey share a pigment in the red–green spectral region,” Vision Res. 25, 1937–1946 (1985).
    [CrossRef]
  18. J. K. Bowmaker, G. H. Jacobs, J. D. Mollon, “Polymorphism of photopigments in the squirrel monkey: a sixth phenotype,” Proc. R. Soc. London Ser. B 231, 383–390 (1987).
    [CrossRef]
  19. G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
    [CrossRef] [PubMed]
  20. S. L. Merbs, J. Nathans, “Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments,” Photochem. Photobiol. 58, 706–710 (1993).
    [CrossRef] [PubMed]
  21. A. B. Asenjo, J. Rim, D. D. Oprian, “Molecular determinants of human red/green color discrimination,” Neuron 12, 1131–1138 (1994).
    [CrossRef] [PubMed]
  22. M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
    [CrossRef] [PubMed]
  23. M. Sawusch, J. Pokorny, V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Invest. Ophthalmol. Vis. Sci. 28, 966–974 (1987).
    [PubMed]
  24. P. Gouras, C. J. MacKay, S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L- and M-cone function.” Invest. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).
    [PubMed]
  25. G. H. Jacobs, J. Neitz, M. Crognale, “Spectral sensitivity of ground squirrel cones measured with ERG flicker photometry,” J. Comp. Physiol. A 156, 503–509 (1985).
    [CrossRef]
  26. M. Crognale, G. H. Jacobs, J. Neitz, “Flicker photometric ERG measurements of short wavelength sensitive cones,” Doc. Ophthalmol. Proc. Ser. 10, 341–346 (1991).
    [CrossRef]
  27. V. C. Greenstein, D. C. Hood, R. E. Carr, “A comparison of S cone pathway sensitivity loss in patients with diabetes and retinitis pigmentosa,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 233–241.
    [CrossRef]
  28. H. Krastel, J. D. Moreland, “Colour vision deficiencies in ophthalmic disease,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (Macmillan, London, 1991), pp. 115–172.
  29. W. H. Swanson, H. Fellman, J. R. Lyon, R. J. Starita, “S-cone contrast sensitivity in glaucoma as a function of mean luminance,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 63–71.
  30. M. A. Crognale, E. Switkes, J. Rabin, M. E. Schneck, G. Haegerstrom-Portnoy, A. J. Adams, “Objective assessment of short wavelength sensitive (SWS) mechanisms with the spatiochromatic VEP: X-linked achromatopsia and transient tritanopia,” in Colour Vision Deficiencies XIII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 407–413.
  31. G. H. Jacobs, J. F. Deegan, M. A. Crognale, J. A. Fenwick, “Photopigments of dogs and foxes and their implications for canid vision,” Vis. Neurosci. 10, 173–180 (1993).
    [CrossRef] [PubMed]
  32. G. H. Jacobs, J. Neitz, “ERG flicker photometric evaluation of spectral sensitivity in protanopes and protanomalous trichromats,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 25–31.
    [CrossRef]
  33. C. M. Cicerone, J. M. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
    [CrossRef] [PubMed]
  34. M. F. Wesner, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone detection statistics in color normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
    [CrossRef]
  35. G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 107–112.
    [CrossRef]
  36. M. Neitz, J. Neitz, “Numbers and ratios of visual pigments genes for normal red–green color vision,” Science 267, 1013–1016 (1995).
    [CrossRef] [PubMed]
  37. W. J. Donovan, W. S. Baron, “Identification of the R-G-cone difference signal in the corneal electroretinogram of the primate,” J. Opt. Soc. Am. 72, 1014–1020 (1982).
    [CrossRef] [PubMed]
  38. S. L. Mills, H. G. Sperling, “Red/green opponency in the rhesus macaque ERG spectral sensitivity is reduced by bicuculline,” Vis. Neurosci. 5, 217–221 (1990).
    [CrossRef] [PubMed]
  39. W. Spileers, F. Reis-Falcao, C. Hogg, G. B. Arden, “Evidence from human electroretinogram A and off responses that color processing occurs in the cones,” Invest. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).
    [PubMed]
  40. G. H. Jacobs, J. B. Calderone, “Contributions from cone mechanisms to the flicker ERG,” Invest. Ophthalmol. Vis. Sci. 35, 2045 (1994).
  41. J. B. Calderone, G. H. Jacobs, “Regional variations in the relative sensitivity to UV light in the mouse retina,” Vis. Neurosci. 12, 463–468 (1995).
    [CrossRef] [PubMed]
  42. D. H. Brainard, J. B. Calderone, G. H. Jacobs, “Contrast flicker ERG responses to cone-isolating stimuli,” Soc. Neurosci. Abstr. 21, 1644 (1995).

1995 (4)

M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
[CrossRef] [PubMed]

M. Neitz, J. Neitz, “Numbers and ratios of visual pigments genes for normal red–green color vision,” Science 267, 1013–1016 (1995).
[CrossRef] [PubMed]

J. B. Calderone, G. H. Jacobs, “Regional variations in the relative sensitivity to UV light in the mouse retina,” Vis. Neurosci. 12, 463–468 (1995).
[CrossRef] [PubMed]

D. H. Brainard, J. B. Calderone, G. H. Jacobs, “Contrast flicker ERG responses to cone-isolating stimuli,” Soc. Neurosci. Abstr. 21, 1644 (1995).

1994 (2)

G. H. Jacobs, J. B. Calderone, “Contributions from cone mechanisms to the flicker ERG,” Invest. Ophthalmol. Vis. Sci. 35, 2045 (1994).

A. B. Asenjo, J. Rim, D. D. Oprian, “Molecular determinants of human red/green color discrimination,” Neuron 12, 1131–1138 (1994).
[CrossRef] [PubMed]

1993 (8)

G. H. Jacobs, J. F. Deegan, M. A. Crognale, J. A. Fenwick, “Photopigments of dogs and foxes and their implications for canid vision,” Vis. Neurosci. 10, 173–180 (1993).
[CrossRef] [PubMed]

W. Spileers, F. Reis-Falcao, C. Hogg, G. B. Arden, “Evidence from human electroretinogram A and off responses that color processing occurs in the cones,” Invest. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).
[PubMed]

Y. Chang, S. A. Burns, M. R. Kreitz, “Red–green flicker photometry and nonlinearities in the flicker electroretinogram,” J. Opt. Soc. Am. A 10, 1413–1422 (1993).
[CrossRef] [PubMed]

P. Gouras, C. J. MacKay, S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L- and M-cone function.” Invest. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).
[PubMed]

G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef] [PubMed]

S. L. Merbs, J. Nathans, “Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments,” Photochem. Photobiol. 58, 706–710 (1993).
[CrossRef] [PubMed]

R. M. Shapley, S. Brodie, “Responses of human ERG to rapid color exchange: implications for M/L cone ratio,” Invest. Ophthalmol. Vis. Sci. 34, 911 (1993).

J. F. Deegan, G. H. Jacobs, “On the identity of the cone types of the rat retina,” Exp. Eye Res. 56, 375–377 (1993).
[CrossRef] [PubMed]

1991 (2)

M. F. Wesner, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone detection statistics in color normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef]

M. Crognale, G. H. Jacobs, J. Neitz, “Flicker photometric ERG measurements of short wavelength sensitive cones,” Doc. Ophthalmol. Proc. Ser. 10, 341–346 (1991).
[CrossRef]

1990 (1)

S. L. Mills, H. G. Sperling, “Red/green opponency in the rhesus macaque ERG spectral sensitivity is reduced by bicuculline,” Vis. Neurosci. 5, 217–221 (1990).
[CrossRef] [PubMed]

1989 (1)

C. M. Cicerone, J. M. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

1988 (1)

A. Szel, T. Diamantstein, P. Rohlich, “Identification of blue-sensitive cones in the mammalian retina by anti-visual pigment antibody,” J. Comp. Neurol. 273, 593–602 (1988).
[CrossRef]

1987 (3)

G. H. Jacobs, J. Neitz, “Inheritance of color vision in a New World monkey (Saimiri sciureus),” Proc. Natl. Acad. Sci. (USA) 84, 2545–2549 (1987).
[CrossRef]

J. K. Bowmaker, G. H. Jacobs, J. D. Mollon, “Polymorphism of photopigments in the squirrel monkey: a sixth phenotype,” Proc. R. Soc. London Ser. B 231, 383–390 (1987).
[CrossRef]

M. Sawusch, J. Pokorny, V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Invest. Ophthalmol. Vis. Sci. 28, 966–974 (1987).
[PubMed]

1985 (3)

G. H. Jacobs, J. Neitz, M. Crognale, “Spectral sensitivity of ground squirrel cones measured with ERG flicker photometry,” J. Comp. Physiol. A 156, 503–509 (1985).
[CrossRef]

J. K. Bowmaker, G. H. Jacobs, D. H. Spiegelhalter, J. D. Mollon, “Two types of trichromatic squirrel monkey share a pigment in the red–green spectral region,” Vision Res. 25, 1937–1946 (1985).
[CrossRef]

F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).

1984 (2)

J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B 222, 373–399 (1984).
[CrossRef]

J. Neitz, G. H. Jacobs, “Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys,” J. Opt. Soc. Am. A 1, 1175–1180 (1984).
[CrossRef] [PubMed]

1983 (2)

J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,” J. Comp. Physiol. 151, 347–352 (1983).
[CrossRef]

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Behav. Brain Res. 8, 343–350 (1983).
[CrossRef] [PubMed]

1982 (1)

1981 (1)

S. M. Dawis, “Polynomial expressions of pigment nomograms,” Vision Res. 21, 1427–1430 (1981).
[CrossRef] [PubMed]

1979 (1)

W. W. Dawson, G. L. Trick, C. A. Litzkow, “Improved electrode for electroretinography,” Invest. Ophthalmol. Vis. Sci. 19, 988–991 (1979).

1964 (1)

C. R. Cavonius, “Color sensitive response in the human flicker-ERG,” Doc. Ophthalmol. 18, 101–113 (1964).
[CrossRef]

Abraham, F. A.

F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).

Adams, A. J.

M. A. Crognale, E. Switkes, J. Rabin, M. E. Schneck, G. Haegerstrom-Portnoy, A. J. Adams, “Objective assessment of short wavelength sensitive (SWS) mechanisms with the spatiochromatic VEP: X-linked achromatopsia and transient tritanopia,” in Colour Vision Deficiencies XIII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 407–413.

Alpern, M.

F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).

Arden, G. B.

W. Spileers, F. Reis-Falcao, C. Hogg, G. B. Arden, “Evidence from human electroretinogram A and off responses that color processing occurs in the cones,” Invest. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).
[PubMed]

Armington, J. C.

J. C. Armington, The Electroretinogram (Academic, New York, 1974).

Asenjo, A. B.

A. B. Asenjo, J. Rim, D. D. Oprian, “Molecular determinants of human red/green color discrimination,” Neuron 12, 1131–1138 (1994).
[CrossRef] [PubMed]

Baron, W. S.

Bowmaker, J. K.

J. K. Bowmaker, G. H. Jacobs, J. D. Mollon, “Polymorphism of photopigments in the squirrel monkey: a sixth phenotype,” Proc. R. Soc. London Ser. B 231, 383–390 (1987).
[CrossRef]

J. K. Bowmaker, G. H. Jacobs, D. H. Spiegelhalter, J. D. Mollon, “Two types of trichromatic squirrel monkey share a pigment in the red–green spectral region,” Vision Res. 25, 1937–1946 (1985).
[CrossRef]

J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B 222, 373–399 (1984).
[CrossRef]

Brainard, D. H.

D. H. Brainard, J. B. Calderone, G. H. Jacobs, “Contrast flicker ERG responses to cone-isolating stimuli,” Soc. Neurosci. Abstr. 21, 1644 (1995).

Brenner, E.

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Behav. Brain Res. 8, 343–350 (1983).
[CrossRef] [PubMed]

Brodie, S.

R. M. Shapley, S. Brodie, “Responses of human ERG to rapid color exchange: implications for M/L cone ratio,” Invest. Ophthalmol. Vis. Sci. 34, 911 (1993).

Burns, S. A.

Calderone, J. B.

D. H. Brainard, J. B. Calderone, G. H. Jacobs, “Contrast flicker ERG responses to cone-isolating stimuli,” Soc. Neurosci. Abstr. 21, 1644 (1995).

J. B. Calderone, G. H. Jacobs, “Regional variations in the relative sensitivity to UV light in the mouse retina,” Vis. Neurosci. 12, 463–468 (1995).
[CrossRef] [PubMed]

G. H. Jacobs, J. B. Calderone, “Contributions from cone mechanisms to the flicker ERG,” Invest. Ophthalmol. Vis. Sci. 35, 2045 (1994).

Carr, R. E.

V. C. Greenstein, D. C. Hood, R. E. Carr, “A comparison of S cone pathway sensitivity loss in patients with diabetes and retinitis pigmentosa,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 233–241.
[CrossRef]

Cavonius, C. R.

C. R. Cavonius, “Color sensitive response in the human flicker-ERG,” Doc. Ophthalmol. 18, 101–113 (1964).
[CrossRef]

Chang, Y.

Cicerone, C. M.

C. M. Cicerone, J. M. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Crognale, M.

M. Crognale, G. H. Jacobs, J. Neitz, “Flicker photometric ERG measurements of short wavelength sensitive cones,” Doc. Ophthalmol. Proc. Ser. 10, 341–346 (1991).
[CrossRef]

G. H. Jacobs, J. Neitz, M. Crognale, “Spectral sensitivity of ground squirrel cones measured with ERG flicker photometry,” J. Comp. Physiol. A 156, 503–509 (1985).
[CrossRef]

Crognale, M. A.

G. H. Jacobs, J. F. Deegan, M. A. Crognale, J. A. Fenwick, “Photopigments of dogs and foxes and their implications for canid vision,” Vis. Neurosci. 10, 173–180 (1993).
[CrossRef] [PubMed]

M. A. Crognale, E. Switkes, J. Rabin, M. E. Schneck, G. Haegerstrom-Portnoy, A. J. Adams, “Objective assessment of short wavelength sensitive (SWS) mechanisms with the spatiochromatic VEP: X-linked achromatopsia and transient tritanopia,” in Colour Vision Deficiencies XIII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 407–413.

Dawis, S. M.

S. M. Dawis, “Polynomial expressions of pigment nomograms,” Vision Res. 21, 1427–1430 (1981).
[CrossRef] [PubMed]

Dawson, W. W.

W. W. Dawson, G. L. Trick, C. A. Litzkow, “Improved electrode for electroretinography,” Invest. Ophthalmol. Vis. Sci. 19, 988–991 (1979).

Deegan, J. F.

J. F. Deegan, G. H. Jacobs, “On the identity of the cone types of the rat retina,” Exp. Eye Res. 56, 375–377 (1993).
[CrossRef] [PubMed]

G. H. Jacobs, J. F. Deegan, M. A. Crognale, J. A. Fenwick, “Photopigments of dogs and foxes and their implications for canid vision,” Vis. Neurosci. 10, 173–180 (1993).
[CrossRef] [PubMed]

Diamantstein, T.

A. Szel, T. Diamantstein, P. Rohlich, “Identification of blue-sensitive cones in the mammalian retina by anti-visual pigment antibody,” J. Comp. Neurol. 273, 593–602 (1988).
[CrossRef]

Donovan, W. J.

Fellman, H.

W. H. Swanson, H. Fellman, J. R. Lyon, R. J. Starita, “S-cone contrast sensitivity in glaucoma as a function of mean luminance,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 63–71.

Fenwick, J. A.

G. H. Jacobs, J. F. Deegan, M. A. Crognale, J. A. Fenwick, “Photopigments of dogs and foxes and their implications for canid vision,” Vis. Neurosci. 10, 173–180 (1993).
[CrossRef] [PubMed]

Gouras, P.

P. Gouras, C. J. MacKay, S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L- and M-cone function.” Invest. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).
[PubMed]

Greenstein, V. C.

V. C. Greenstein, D. C. Hood, R. E. Carr, “A comparison of S cone pathway sensitivity loss in patients with diabetes and retinitis pigmentosa,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 233–241.
[CrossRef]

Haegerstrom-Portnoy, G.

M. A. Crognale, E. Switkes, J. Rabin, M. E. Schneck, G. Haegerstrom-Portnoy, A. J. Adams, “Objective assessment of short wavelength sensitive (SWS) mechanisms with the spatiochromatic VEP: X-linked achromatopsia and transient tritanopia,” in Colour Vision Deficiencies XIII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 407–413.

Hogg, C.

W. Spileers, F. Reis-Falcao, C. Hogg, G. B. Arden, “Evidence from human electroretinogram A and off responses that color processing occurs in the cones,” Invest. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).
[PubMed]

Hood, D. C.

V. C. Greenstein, D. C. Hood, R. E. Carr, “A comparison of S cone pathway sensitivity loss in patients with diabetes and retinitis pigmentosa,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 233–241.
[CrossRef]

Jacobs, G. H.

M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
[CrossRef] [PubMed]

J. B. Calderone, G. H. Jacobs, “Regional variations in the relative sensitivity to UV light in the mouse retina,” Vis. Neurosci. 12, 463–468 (1995).
[CrossRef] [PubMed]

D. H. Brainard, J. B. Calderone, G. H. Jacobs, “Contrast flicker ERG responses to cone-isolating stimuli,” Soc. Neurosci. Abstr. 21, 1644 (1995).

G. H. Jacobs, J. B. Calderone, “Contributions from cone mechanisms to the flicker ERG,” Invest. Ophthalmol. Vis. Sci. 35, 2045 (1994).

G. H. Jacobs, J. F. Deegan, M. A. Crognale, J. A. Fenwick, “Photopigments of dogs and foxes and their implications for canid vision,” Vis. Neurosci. 10, 173–180 (1993).
[CrossRef] [PubMed]

J. F. Deegan, G. H. Jacobs, “On the identity of the cone types of the rat retina,” Exp. Eye Res. 56, 375–377 (1993).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef] [PubMed]

M. Crognale, G. H. Jacobs, J. Neitz, “Flicker photometric ERG measurements of short wavelength sensitive cones,” Doc. Ophthalmol. Proc. Ser. 10, 341–346 (1991).
[CrossRef]

J. K. Bowmaker, G. H. Jacobs, J. D. Mollon, “Polymorphism of photopigments in the squirrel monkey: a sixth phenotype,” Proc. R. Soc. London Ser. B 231, 383–390 (1987).
[CrossRef]

G. H. Jacobs, J. Neitz, “Inheritance of color vision in a New World monkey (Saimiri sciureus),” Proc. Natl. Acad. Sci. (USA) 84, 2545–2549 (1987).
[CrossRef]

J. K. Bowmaker, G. H. Jacobs, D. H. Spiegelhalter, J. D. Mollon, “Two types of trichromatic squirrel monkey share a pigment in the red–green spectral region,” Vision Res. 25, 1937–1946 (1985).
[CrossRef]

G. H. Jacobs, J. Neitz, M. Crognale, “Spectral sensitivity of ground squirrel cones measured with ERG flicker photometry,” J. Comp. Physiol. A 156, 503–509 (1985).
[CrossRef]

J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B 222, 373–399 (1984).
[CrossRef]

J. Neitz, G. H. Jacobs, “Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys,” J. Opt. Soc. Am. A 1, 1175–1180 (1984).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 107–112.
[CrossRef]

G. H. Jacobs, “Color-vision polymorphisms in New World monkeys: implications for the evolution of primate trichromacy,” in New World Primates: Ecology, Evolution and Behavior, W. G. Kinzey, ed. (de Gruyter, New York, 1996).

G. H. Jacobs, J. Neitz, “ERG flicker photometric evaluation of spectral sensitivity in protanopes and protanomalous trichromats,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 25–31.
[CrossRef]

Kirk, D. B.

F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).

Krastel, H.

H. Krastel, J. D. Moreland, “Colour vision deficiencies in ophthalmic disease,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (Macmillan, London, 1991), pp. 115–172.

Kreitz, M. R.

Litzkow, C. A.

W. W. Dawson, G. L. Trick, C. A. Litzkow, “Improved electrode for electroretinography,” Invest. Ophthalmol. Vis. Sci. 19, 988–991 (1979).

Lyon, J. R.

W. H. Swanson, H. Fellman, J. R. Lyon, R. J. Starita, “S-cone contrast sensitivity in glaucoma as a function of mean luminance,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 63–71.

MacKay, C. J.

P. Gouras, C. J. MacKay, S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L- and M-cone function.” Invest. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).
[PubMed]

Merbs, S. L.

S. L. Merbs, J. Nathans, “Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments,” Photochem. Photobiol. 58, 706–710 (1993).
[CrossRef] [PubMed]

Mills, S. L.

S. L. Mills, H. G. Sperling, “Red/green opponency in the rhesus macaque ERG spectral sensitivity is reduced by bicuculline,” Vis. Neurosci. 5, 217–221 (1990).
[CrossRef] [PubMed]

Mollon, J. D.

J. K. Bowmaker, G. H. Jacobs, J. D. Mollon, “Polymorphism of photopigments in the squirrel monkey: a sixth phenotype,” Proc. R. Soc. London Ser. B 231, 383–390 (1987).
[CrossRef]

J. K. Bowmaker, G. H. Jacobs, D. H. Spiegelhalter, J. D. Mollon, “Two types of trichromatic squirrel monkey share a pigment in the red–green spectral region,” Vision Res. 25, 1937–1946 (1985).
[CrossRef]

J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B 222, 373–399 (1984).
[CrossRef]

Moreland, J. D.

H. Krastel, J. D. Moreland, “Colour vision deficiencies in ophthalmic disease,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (Macmillan, London, 1991), pp. 115–172.

Nathans, J.

S. L. Merbs, J. Nathans, “Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments,” Photochem. Photobiol. 58, 706–710 (1993).
[CrossRef] [PubMed]

Neitz, J.

M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
[CrossRef] [PubMed]

M. Neitz, J. Neitz, “Numbers and ratios of visual pigments genes for normal red–green color vision,” Science 267, 1013–1016 (1995).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef] [PubMed]

M. Crognale, G. H. Jacobs, J. Neitz, “Flicker photometric ERG measurements of short wavelength sensitive cones,” Doc. Ophthalmol. Proc. Ser. 10, 341–346 (1991).
[CrossRef]

G. H. Jacobs, J. Neitz, “Inheritance of color vision in a New World monkey (Saimiri sciureus),” Proc. Natl. Acad. Sci. (USA) 84, 2545–2549 (1987).
[CrossRef]

G. H. Jacobs, J. Neitz, M. Crognale, “Spectral sensitivity of ground squirrel cones measured with ERG flicker photometry,” J. Comp. Physiol. A 156, 503–509 (1985).
[CrossRef]

J. Neitz, G. H. Jacobs, “Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys,” J. Opt. Soc. Am. A 1, 1175–1180 (1984).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 107–112.
[CrossRef]

G. H. Jacobs, J. Neitz, “ERG flicker photometric evaluation of spectral sensitivity in protanopes and protanomalous trichromats,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 25–31.
[CrossRef]

Neitz, M.

M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
[CrossRef] [PubMed]

M. Neitz, J. Neitz, “Numbers and ratios of visual pigments genes for normal red–green color vision,” Science 267, 1013–1016 (1995).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef] [PubMed]

Nerger, J. M.

C. M. Cicerone, J. M. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Nuboer, J. F. W.

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Behav. Brain Res. 8, 343–350 (1983).
[CrossRef] [PubMed]

J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,” J. Comp. Physiol. 151, 347–352 (1983).
[CrossRef]

Oprian, D. D.

A. B. Asenjo, J. Rim, D. D. Oprian, “Molecular determinants of human red/green color discrimination,” Neuron 12, 1131–1138 (1994).
[CrossRef] [PubMed]

Pokorny, J.

M. F. Wesner, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone detection statistics in color normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef]

M. Sawusch, J. Pokorny, V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Invest. Ophthalmol. Vis. Sci. 28, 966–974 (1987).
[PubMed]

Rabin, J.

M. A. Crognale, E. Switkes, J. Rabin, M. E. Schneck, G. Haegerstrom-Portnoy, A. J. Adams, “Objective assessment of short wavelength sensitive (SWS) mechanisms with the spatiochromatic VEP: X-linked achromatopsia and transient tritanopia,” in Colour Vision Deficiencies XIII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 407–413.

Reis-Falcao, F.

W. Spileers, F. Reis-Falcao, C. Hogg, G. B. Arden, “Evidence from human electroretinogram A and off responses that color processing occurs in the cones,” Invest. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).
[PubMed]

Rim, J.

A. B. Asenjo, J. Rim, D. D. Oprian, “Molecular determinants of human red/green color discrimination,” Neuron 12, 1131–1138 (1994).
[CrossRef] [PubMed]

Rohlich, P.

A. Szel, T. Diamantstein, P. Rohlich, “Identification of blue-sensitive cones in the mammalian retina by anti-visual pigment antibody,” J. Comp. Neurol. 273, 593–602 (1988).
[CrossRef]

Sawusch, M.

M. Sawusch, J. Pokorny, V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Invest. Ophthalmol. Vis. Sci. 28, 966–974 (1987).
[PubMed]

Schneck, M. E.

M. A. Crognale, E. Switkes, J. Rabin, M. E. Schneck, G. Haegerstrom-Portnoy, A. J. Adams, “Objective assessment of short wavelength sensitive (SWS) mechanisms with the spatiochromatic VEP: X-linked achromatopsia and transient tritanopia,” in Colour Vision Deficiencies XIII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 407–413.

Shapley, R. M.

R. M. Shapley, S. Brodie, “Responses of human ERG to rapid color exchange: implications for M/L cone ratio,” Invest. Ophthalmol. Vis. Sci. 34, 911 (1993).

Shevell, S. K.

M. F. Wesner, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone detection statistics in color normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef]

Smith, V. C.

M. F. Wesner, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone detection statistics in color normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef]

M. Sawusch, J. Pokorny, V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Invest. Ophthalmol. Vis. Sci. 28, 966–974 (1987).
[PubMed]

Spaan, J. P.

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Behav. Brain Res. 8, 343–350 (1983).
[CrossRef] [PubMed]

Sperling, H. G.

S. L. Mills, H. G. Sperling, “Red/green opponency in the rhesus macaque ERG spectral sensitivity is reduced by bicuculline,” Vis. Neurosci. 5, 217–221 (1990).
[CrossRef] [PubMed]

Spiegelhalter, D. H.

J. K. Bowmaker, G. H. Jacobs, D. H. Spiegelhalter, J. D. Mollon, “Two types of trichromatic squirrel monkey share a pigment in the red–green spectral region,” Vision Res. 25, 1937–1946 (1985).
[CrossRef]

Spileers, W.

W. Spileers, F. Reis-Falcao, C. Hogg, G. B. Arden, “Evidence from human electroretinogram A and off responses that color processing occurs in the cones,” Invest. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).
[PubMed]

Starita, R. J.

W. H. Swanson, H. Fellman, J. R. Lyon, R. J. Starita, “S-cone contrast sensitivity in glaucoma as a function of mean luminance,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 63–71.

Swanson, W. H.

W. H. Swanson, H. Fellman, J. R. Lyon, R. J. Starita, “S-cone contrast sensitivity in glaucoma as a function of mean luminance,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 63–71.

Switkes, E.

M. A. Crognale, E. Switkes, J. Rabin, M. E. Schneck, G. Haegerstrom-Portnoy, A. J. Adams, “Objective assessment of short wavelength sensitive (SWS) mechanisms with the spatiochromatic VEP: X-linked achromatopsia and transient tritanopia,” in Colour Vision Deficiencies XIII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 407–413.

Szel, A.

A. Szel, T. Diamantstein, P. Rohlich, “Identification of blue-sensitive cones in the mammalian retina by anti-visual pigment antibody,” J. Comp. Neurol. 273, 593–602 (1988).
[CrossRef]

Trick, G. L.

W. W. Dawson, G. L. Trick, C. A. Litzkow, “Improved electrode for electroretinography,” Invest. Ophthalmol. Vis. Sci. 19, 988–991 (1979).

van Norren, D.

D. van Norren, “Electroretinographic aspects of colour vision deficiencies,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (Macmillan, London, 1991), pp. 56–63.

van Nuys, W. M.

J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,” J. Comp. Physiol. 151, 347–352 (1983).
[CrossRef]

Wesner, M. F.

M. F. Wesner, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone detection statistics in color normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef]

Wortel, J. F.

J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,” J. Comp. Physiol. 151, 347–352 (1983).
[CrossRef]

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Behav. Brain Res. 8, 343–350 (1983).
[CrossRef] [PubMed]

Yamamoto, S.

P. Gouras, C. J. MacKay, S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L- and M-cone function.” Invest. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).
[PubMed]

Behav. Brain Res. (1)

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Behav. Brain Res. 8, 343–350 (1983).
[CrossRef] [PubMed]

Doc. Ophthalmol. (1)

C. R. Cavonius, “Color sensitive response in the human flicker-ERG,” Doc. Ophthalmol. 18, 101–113 (1964).
[CrossRef]

Doc. Ophthalmol. Proc. Ser. (1)

M. Crognale, G. H. Jacobs, J. Neitz, “Flicker photometric ERG measurements of short wavelength sensitive cones,” Doc. Ophthalmol. Proc. Ser. 10, 341–346 (1991).
[CrossRef]

Exp. Eye Res. (1)

J. F. Deegan, G. H. Jacobs, “On the identity of the cone types of the rat retina,” Exp. Eye Res. 56, 375–377 (1993).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (6)

R. M. Shapley, S. Brodie, “Responses of human ERG to rapid color exchange: implications for M/L cone ratio,” Invest. Ophthalmol. Vis. Sci. 34, 911 (1993).

W. W. Dawson, G. L. Trick, C. A. Litzkow, “Improved electrode for electroretinography,” Invest. Ophthalmol. Vis. Sci. 19, 988–991 (1979).

M. Sawusch, J. Pokorny, V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Invest. Ophthalmol. Vis. Sci. 28, 966–974 (1987).
[PubMed]

P. Gouras, C. J. MacKay, S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L- and M-cone function.” Invest. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).
[PubMed]

W. Spileers, F. Reis-Falcao, C. Hogg, G. B. Arden, “Evidence from human electroretinogram A and off responses that color processing occurs in the cones,” Invest. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).
[PubMed]

G. H. Jacobs, J. B. Calderone, “Contributions from cone mechanisms to the flicker ERG,” Invest. Ophthalmol. Vis. Sci. 35, 2045 (1994).

J. Comp. Neurol. (1)

A. Szel, T. Diamantstein, P. Rohlich, “Identification of blue-sensitive cones in the mammalian retina by anti-visual pigment antibody,” J. Comp. Neurol. 273, 593–602 (1988).
[CrossRef]

J. Comp. Physiol. (1)

J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,” J. Comp. Physiol. 151, 347–352 (1983).
[CrossRef]

J. Comp. Physiol. A (1)

G. H. Jacobs, J. Neitz, M. Crognale, “Spectral sensitivity of ground squirrel cones measured with ERG flicker photometry,” J. Comp. Physiol. A 156, 503–509 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (1)

F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).

Neuron (1)

A. B. Asenjo, J. Rim, D. D. Oprian, “Molecular determinants of human red/green color discrimination,” Neuron 12, 1131–1138 (1994).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

S. L. Merbs, J. Nathans, “Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments,” Photochem. Photobiol. 58, 706–710 (1993).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. (USA) (1)

G. H. Jacobs, J. Neitz, “Inheritance of color vision in a New World monkey (Saimiri sciureus),” Proc. Natl. Acad. Sci. (USA) 84, 2545–2549 (1987).
[CrossRef]

Proc. R. Soc. London Ser. B (2)

J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B 222, 373–399 (1984).
[CrossRef]

J. K. Bowmaker, G. H. Jacobs, J. D. Mollon, “Polymorphism of photopigments in the squirrel monkey: a sixth phenotype,” Proc. R. Soc. London Ser. B 231, 383–390 (1987).
[CrossRef]

Science (1)

M. Neitz, J. Neitz, “Numbers and ratios of visual pigments genes for normal red–green color vision,” Science 267, 1013–1016 (1995).
[CrossRef] [PubMed]

Soc. Neurosci. Abstr. (1)

D. H. Brainard, J. B. Calderone, G. H. Jacobs, “Contrast flicker ERG responses to cone-isolating stimuli,” Soc. Neurosci. Abstr. 21, 1644 (1995).

Vis. Neurosci. (3)

J. B. Calderone, G. H. Jacobs, “Regional variations in the relative sensitivity to UV light in the mouse retina,” Vis. Neurosci. 12, 463–468 (1995).
[CrossRef] [PubMed]

S. L. Mills, H. G. Sperling, “Red/green opponency in the rhesus macaque ERG spectral sensitivity is reduced by bicuculline,” Vis. Neurosci. 5, 217–221 (1990).
[CrossRef] [PubMed]

G. H. Jacobs, J. F. Deegan, M. A. Crognale, J. A. Fenwick, “Photopigments of dogs and foxes and their implications for canid vision,” Vis. Neurosci. 10, 173–180 (1993).
[CrossRef] [PubMed]

Vision Res. (6)

C. M. Cicerone, J. M. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone detection statistics in color normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef]

M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef] [PubMed]

J. K. Bowmaker, G. H. Jacobs, D. H. Spiegelhalter, J. D. Mollon, “Two types of trichromatic squirrel monkey share a pigment in the red–green spectral region,” Vision Res. 25, 1937–1946 (1985).
[CrossRef]

S. M. Dawis, “Polynomial expressions of pigment nomograms,” Vision Res. 21, 1427–1430 (1981).
[CrossRef] [PubMed]

Other (9)

G. H. Jacobs, “Color-vision polymorphisms in New World monkeys: implications for the evolution of primate trichromacy,” in New World Primates: Ecology, Evolution and Behavior, W. G. Kinzey, ed. (de Gruyter, New York, 1996).

J. C. Armington, The Electroretinogram (Academic, New York, 1974).

D. van Norren, “Electroretinographic aspects of colour vision deficiencies,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (Macmillan, London, 1991), pp. 56–63.

V. C. Greenstein, D. C. Hood, R. E. Carr, “A comparison of S cone pathway sensitivity loss in patients with diabetes and retinitis pigmentosa,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 233–241.
[CrossRef]

H. Krastel, J. D. Moreland, “Colour vision deficiencies in ophthalmic disease,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (Macmillan, London, 1991), pp. 115–172.

W. H. Swanson, H. Fellman, J. R. Lyon, R. J. Starita, “S-cone contrast sensitivity in glaucoma as a function of mean luminance,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 63–71.

M. A. Crognale, E. Switkes, J. Rabin, M. E. Schneck, G. Haegerstrom-Portnoy, A. J. Adams, “Objective assessment of short wavelength sensitive (SWS) mechanisms with the spatiochromatic VEP: X-linked achromatopsia and transient tritanopia,” in Colour Vision Deficiencies XIII, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 407–413.

G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 107–112.
[CrossRef]

G. H. Jacobs, J. Neitz, “ERG flicker photometric evaluation of spectral sensitivity in protanopes and protanomalous trichromats,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 25–31.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Signal processing for ERG flicker photometry is schematized for two conditions. In the left-hand column the test light is less effective in producing an ERG signal than is the reference light; in the right-hand column the reverse holds. The time courses and the relative intensities of the test and the reference lights are illustrated individually and are then superimposed (as they are in the actual stimulus; rows 1–3). The next four rows illustrate the sequence of steps in signal processing. The signal is first passed through a narrow-bandpass filter. The signal is then chopped, and the output is inverted during each on-period of the test light and its subsequent off-period. The output is again filtered through a second narrow-bandpass filter. This filter is set to pass a frequency exactly twice that of the first filter. The waveforms illustrated correspond to the sine waves that are passed at the center frequency of each bandpass filter. The final processing stage averages over a period that corresponds to one cycle at the center frequency of the second filter. The final outputs for the two conditions are 180 deg out of phase. As indicated, the phase and the amplitude of the output are used to direct further changes in the test-light intensity.

Fig. 2
Fig. 2

Demonstration of the sensitivity of ERG flicker photometry. ERG amplitudes were measured for a number of wedge density settings in the vicinity of the position required for an equation to be attained. The latter is indicated by the two vertical lines at the bottom (see text). Each plotted value represents the mean obtained for 10 separate averages (error bars are ±1 standard deviation). The filled symbols at the left are for cases in which the test light was relatively too bright; open symbols to the right are for settings at which the test light was relatively too dim. The recordings were those of cone signals from the eye of a Siberian hamster (Phodopus sungorus). Stimulus: 500 nm, 12.5 Hz.

Fig. 3
Fig. 3

ERG spectral sensitivity function recorded from a human protanope. The filled circles are mean values obtained from two test sessions that were separated by a period of ~4 years. The absolute difference in sensitivity for the two sessions at each test wavelength is plotted by the filled diamonds. The continuous curve is an absorption spectrum for a standard photopigment having a peak value of 530 nm. Stimulus: 31.25 Hz.

Fig. 4
Fig. 4

Comparison of spectral sensitivity assessed with ERG flicker photometry and photopigment spectra. The filled circles are the mean sensitivity values for 17 dichromatic squirrel monkeys (Saimiri sciureus), each of which had the same type of L/M cone photopigment. Before the data were combined, the spectral sensitivity function for each animal was adjusted on the sensitivity axis so that each had the same average sensitivity. The vertical bars enclose ±2 standard deviations. The continuous curve is that for the best-fitting visual pigment absorption curve (λMAX = 560 nm). Stimulus: 31.25 Hz.

Fig. 5
Fig. 5

Spectral sensitivity curves obtained with ERG flicker photometry from four deuteranopic subjects (the open triangles and the filled circles represent sensitivity of individual subjects). The L-cone pigments for the pair whose data are shifted slightly to the longer wavelengths differ from those of the other pair by an amino acid substitution at position 180 in their L-cone opsins. The continuous curves are photopigment absorption spectra having respective peaks of 558 and 563 nm.

Fig. 6
Fig. 6

S-cone signals recorded by ERG flicker photometry. The filled symbols show spectral sensitivity measured from a human deuteranope. The conditions were arranged to maximize the contribution of S-cone signals to the ERG (see text for description). The continuous curve is that for the best-fitting summative combination of two different photopigment absorption curves (λMAX values of 430 and 558 nm, respectively). Stimulus: 12.5 Hz.

Fig. 7
Fig. 7

Effects of duty cycle on spectral sensitivity measured with ERG flicker photometry. Two spectral sensitivity functions were recorded for a normal human trichromat under identical stimulus conditions (20-Hz pulse rate) except for the stimulus duty cycle, which was either 25% (triangles) or 50% (circles). The curve for the 25% duty-cycle condition was best fitted with a summative combination of L- and M-cone fundamentals (λMAX of 561 and 530 nm, respectively). The curve obtained with the 50% duty cycle is well fitted by summation for test wavelengths shorter than ~600 nm; beyond that point the function is well accounted for by subtractive combination (dashed curve) of the same two cone fundamentals.

Metrics