Abstract

The primate electroretinogram (ERG) recorded at the cornea in response to fast flickering light is thought to reflect primarily the cone photoreceptor potential. We investigated the origin of the photopic 33-Hz corneal flicker ERG to square-wave and photostrobe flashes by recording in the monkey before and after blocking postsynaptic responses with intravitreal injections of 2-amino-4-phosphonobutyric acid and/or cis-2, 3-piperidiendicarboxylic acid or sodium aspartate. Blocking postsynapic ON or OFF responses produced effects on the timing and the waveform of the 33-Hz flicker ERG similar to changes in the b and the d waves in the corneal single-flash ERG. When all the ERG waves of postsynaptic origin in the flash ERG were abolished the flicker response was greatly suppressed, suggesting that postsynaptic cells producing the b and the d waves make major contributions to the photopic fast flicker ERG.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Granit, Sensory Mechanisms of the Retina (Oxford U. Press, London, 1947).
  2. W. J. Donovan, W. S. Baron, “Identification of the R–G-cone difference signal in the corneal electroretinogram of the primate,” J. Opt. Soc. Am. 72, 1014–1020 (1982).
    [CrossRef] [PubMed]
  3. W. Seiple, K. Holopigian, V. Greenstein, D. C. Hood, “Temporal frequency dependent adaptation at the level of the outer retina in humans,” Vision Res. 32, 2043–2048 (1992).
    [CrossRef] [PubMed]
  4. W. De-Zheng, J. Liang, L. Wu, T. Luo, Y. U. Minzhong, “Quantitative evaluation of flicker ERG waveforms in low vision patients,” Eye Sci. 8, 122–125 (1992).
  5. B. Falsini, G. Iarossi, V. Porciatti, E. Merendino, A. Fadda, S. Germola, L. Buzzonetti, “Postreceptoral contribution to macular dysfunction in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 35, 4282–4290 (1994).
    [PubMed]
  6. W. Baron, R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. (London) 246, 311–331 (1975).
  7. W. S. Baron, R. M. Boynton, R. W. Hammon, “Component analysis of the foveal local electroretinogram elicited with sinusoidal flicker,” Vision Res. 19, 479–490 (1979).
    [CrossRef] [PubMed]
  8. W. S. Baron, R. M. Boynton, D. van Norren, “Primate cone sensitivity to flicker during light and dark adaptation as indicated by the foveal local electroretinogram,” Vision Res. 19, 109–116 (1979).
    [CrossRef] [PubMed]
  9. R. F. Miller, J. E. Dowling, “Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram,” J. Neurophysiol. 33, 323–341 (1970).
    [PubMed]
  10. W. Ernst, G. B. Arden, “Separation of two PIII components in the rat electroretinogram by a flicker method,” Vision Res. 12, 1759–1761 (1972).
    [CrossRef] [PubMed]
  11. F. A. Abraham, M. Alpern, “Factors influencing threshold of the fundamental electrical response to sinusoidal excitation of human photoreceptors,” J. Physiol. (London) 357, 151–172 (1984).
  12. F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).
  13. D. J. Creel, J. M. Wang, K. C. Wong, “Transient blindness associated with transurethral resection of the prostate,” Arch. Ophthalmol. 105, 1537–1539 (1987).
    [CrossRef] [PubMed]
  14. X. Xu, J. Xu, B. Huang, C. T. Livsey, C. J. Karwoski, “Comparison of pharmacological agents (aspartate vs. aminophosphonobutyric plus kynurenic acids) to block synaptic transmission from retinal photoreceptors in frog,” Exp. Eye Res. 52, 691–698 (1991).
    [CrossRef] [PubMed]
  15. R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Vis. Sci. 35, 635–645 (1994).
    [PubMed]
  16. P. A. Sieving, K. Murayama, F. Naarendorp, “Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
    [CrossRef] [PubMed]
  17. M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–63 (1954).
    [CrossRef]
  18. A. Weiner, M. A. Sandberg, “Normal change in the foveal cone ERG with increasing duration of light exposure,” Invest. Ophthalmol. Vis. Sci. 32, 2842–2845 (1991).
    [PubMed]
  19. N. S. Peachey, K. R. Alexander, D. J. Derlacki, G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8, 145–150 (1992).
    [CrossRef] [PubMed]
  20. A. G. Knapp, P. H. Schiller, “The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeys,” Vision Res. 24, 1841–1846 (1984).
    [CrossRef]
  21. K. T. Brown, K. Watanabe, “Isolation and identification of a receptor potential from the pure cone fovea of the monkey retina,” Nature (London) 193, 958–960 (1962).
    [CrossRef]
  22. R. D. Penn, W. A. Hagins, “Signal transmission along retinal rods and the origin of the a-wave,” Nature (London) 223, 201–205 (1969).
    [CrossRef]
  23. X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials. II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994).
    [PubMed]
  24. D. S. Faber, “Analysis of the slow transretinal potentials in response to light,” Ph.D. dissertation (University of New York, at Buffalo, Buffalo, N.Y., 1969).
  25. E. A. Newman, L. L. Odette, “Model of electroretinogram b-wave generation: a test of the K+hypothesis,” J. Neurophysiol. 51, 164–182 (1984).
    [PubMed]
  26. K. T. Brown, K. Watanabe, M. Murakami, “The early and late receptor potentials of monkey cones and rods,” Cold Spring Harbor Symp. Quant. Biol. 30, 457–482 (1965).
    [CrossRef]
  27. R. A. Stockton, M. M. Slaughter, “B-wave of the electroretinogram: a reflection of on bipolar cell activity,” J. Gen. Physiol. 93, 101–122 (1989).
    [CrossRef] [PubMed]
  28. W. Seiple, K. Holopigian, “The ‘OFF’ response of the human electroretinogram does not contribute to the brief flash ‘b-wave,’” Vis. Neurosci. 11, 667–673 (1994).
    [CrossRef] [PubMed]
  29. M. M. Slaughter, R. F. Miller, “2-amino-4-phosphonobutyric acid: a new tool for retina research,” Science 211, 182–185 (1981).
    [CrossRef] [PubMed]
  30. S. Nawy, D. R. Copenhagen, “The glutamate analog 2-amino-4-phosphonobutyrate antagonizes synaptic transmission from cones to horizontal cells in goldfish retina,” Proc. Natl. Acad. Sci. (USA) 86, 1726–1730 (1989).
    [CrossRef]
  31. X. L. Yang, S. M. Wu, “Effects of CNQX, APB, PDA and kynurenate on horizontal cells of the tiger salamander retina,” Vis. Neurosci. 3, 207–212 (1989).
    [CrossRef] [PubMed]
  32. M. M. Slaughter, R. F. Miller, “An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons,” Science 219, 1230–1232 (1983).
    [CrossRef] [PubMed]
  33. R. P. Gallemore, E. R. Griff, R. H. Steinberg, “Evidence in support of a photoreceptor origin for the ‘light-peak substance,’ ” Invest. Ophthalmol. Vis. Sci. 29, 566–571 (1988).
    [PubMed]
  34. V. J. Balcar, G. A. Johnston, “The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices,” J. Neurochem. 19, 2657–2666 (1972).
    [CrossRef] [PubMed]
  35. K. Wakabayashi, J. Gieser, P. A. Sieving, “Aspartate separation of the scotopic threshold response (STR) from the photoreceptor a-wave of the cat and monkey ERG,” Invest. Ophthalmol. Vis. Sci. 29, 1615–1622 (1988).
    [PubMed]
  36. M. F. Marmor, G. B. Arden, S. E. Nilsson, E. Zrenner, “Standard for clinical retinography,” Arch. Ophthalmol. 107, 816–819 (1989).
    [CrossRef]
  37. R. A. Bush, P. A. Sieving, “Monkey intraretinal photopic ERG responses in vivoafter glutamate analogs,” Invest. Ophthalmol. Vis. Sci. Suppl. 36, 445 (1995).
  38. S. Nawy, D. R. Copenhagen, “Multiple classes of glutamate receptor on depolarizing bipolar cells in retina,” Nature (London) 325, 56–58 (1987).
    [CrossRef]
  39. N. Tian, M. M. Slaughter, “Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram,” Vision Res. 35, 1359–1364 (1995).
    [CrossRef] [PubMed]
  40. J. G. Robson, L. J. Frishman, “Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram,” Visual Neurosci. 12, 837–850 (1995).
    [CrossRef]
  41. R. Hanitzsch, T. Lichtenberger, W.-U. Mättig, “The influence of MgCl2and APB on the light-induced potassium changes and the ERG b-wave of the isolated superfused rat retina,” Invest. Ophthalmol. Vision Res. (to be published).
  42. W. S. Baron, “Chromatic adaptation and flicker-frequency effects on primate R–G-cone difference signal,” J. Opt. Soc. Am. 72, 1008–1013 (1982).
    [CrossRef] [PubMed]

1995 (3)

N. Tian, M. M. Slaughter, “Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram,” Vision Res. 35, 1359–1364 (1995).
[CrossRef] [PubMed]

J. G. Robson, L. J. Frishman, “Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram,” Visual Neurosci. 12, 837–850 (1995).
[CrossRef]

R. A. Bush, P. A. Sieving, “Monkey intraretinal photopic ERG responses in vivoafter glutamate analogs,” Invest. Ophthalmol. Vis. Sci. Suppl. 36, 445 (1995).

1994 (5)

X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials. II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994).
[PubMed]

W. Seiple, K. Holopigian, “The ‘OFF’ response of the human electroretinogram does not contribute to the brief flash ‘b-wave,’” Vis. Neurosci. 11, 667–673 (1994).
[CrossRef] [PubMed]

B. Falsini, G. Iarossi, V. Porciatti, E. Merendino, A. Fadda, S. Germola, L. Buzzonetti, “Postreceptoral contribution to macular dysfunction in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 35, 4282–4290 (1994).
[PubMed]

R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Vis. Sci. 35, 635–645 (1994).
[PubMed]

P. A. Sieving, K. Murayama, F. Naarendorp, “Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef] [PubMed]

1992 (3)

N. S. Peachey, K. R. Alexander, D. J. Derlacki, G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8, 145–150 (1992).
[CrossRef] [PubMed]

W. Seiple, K. Holopigian, V. Greenstein, D. C. Hood, “Temporal frequency dependent adaptation at the level of the outer retina in humans,” Vision Res. 32, 2043–2048 (1992).
[CrossRef] [PubMed]

W. De-Zheng, J. Liang, L. Wu, T. Luo, Y. U. Minzhong, “Quantitative evaluation of flicker ERG waveforms in low vision patients,” Eye Sci. 8, 122–125 (1992).

1991 (2)

X. Xu, J. Xu, B. Huang, C. T. Livsey, C. J. Karwoski, “Comparison of pharmacological agents (aspartate vs. aminophosphonobutyric plus kynurenic acids) to block synaptic transmission from retinal photoreceptors in frog,” Exp. Eye Res. 52, 691–698 (1991).
[CrossRef] [PubMed]

A. Weiner, M. A. Sandberg, “Normal change in the foveal cone ERG with increasing duration of light exposure,” Invest. Ophthalmol. Vis. Sci. 32, 2842–2845 (1991).
[PubMed]

1989 (4)

S. Nawy, D. R. Copenhagen, “The glutamate analog 2-amino-4-phosphonobutyrate antagonizes synaptic transmission from cones to horizontal cells in goldfish retina,” Proc. Natl. Acad. Sci. (USA) 86, 1726–1730 (1989).
[CrossRef]

X. L. Yang, S. M. Wu, “Effects of CNQX, APB, PDA and kynurenate on horizontal cells of the tiger salamander retina,” Vis. Neurosci. 3, 207–212 (1989).
[CrossRef] [PubMed]

R. A. Stockton, M. M. Slaughter, “B-wave of the electroretinogram: a reflection of on bipolar cell activity,” J. Gen. Physiol. 93, 101–122 (1989).
[CrossRef] [PubMed]

M. F. Marmor, G. B. Arden, S. E. Nilsson, E. Zrenner, “Standard for clinical retinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

1988 (2)

K. Wakabayashi, J. Gieser, P. A. Sieving, “Aspartate separation of the scotopic threshold response (STR) from the photoreceptor a-wave of the cat and monkey ERG,” Invest. Ophthalmol. Vis. Sci. 29, 1615–1622 (1988).
[PubMed]

R. P. Gallemore, E. R. Griff, R. H. Steinberg, “Evidence in support of a photoreceptor origin for the ‘light-peak substance,’ ” Invest. Ophthalmol. Vis. Sci. 29, 566–571 (1988).
[PubMed]

1987 (2)

D. J. Creel, J. M. Wang, K. C. Wong, “Transient blindness associated with transurethral resection of the prostate,” Arch. Ophthalmol. 105, 1537–1539 (1987).
[CrossRef] [PubMed]

S. Nawy, D. R. Copenhagen, “Multiple classes of glutamate receptor on depolarizing bipolar cells in retina,” Nature (London) 325, 56–58 (1987).
[CrossRef]

1985 (1)

F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).

1984 (3)

A. G. Knapp, P. H. Schiller, “The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeys,” Vision Res. 24, 1841–1846 (1984).
[CrossRef]

F. A. Abraham, M. Alpern, “Factors influencing threshold of the fundamental electrical response to sinusoidal excitation of human photoreceptors,” J. Physiol. (London) 357, 151–172 (1984).

E. A. Newman, L. L. Odette, “Model of electroretinogram b-wave generation: a test of the K+hypothesis,” J. Neurophysiol. 51, 164–182 (1984).
[PubMed]

1983 (1)

M. M. Slaughter, R. F. Miller, “An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons,” Science 219, 1230–1232 (1983).
[CrossRef] [PubMed]

1982 (2)

1981 (1)

M. M. Slaughter, R. F. Miller, “2-amino-4-phosphonobutyric acid: a new tool for retina research,” Science 211, 182–185 (1981).
[CrossRef] [PubMed]

1979 (2)

W. S. Baron, R. M. Boynton, R. W. Hammon, “Component analysis of the foveal local electroretinogram elicited with sinusoidal flicker,” Vision Res. 19, 479–490 (1979).
[CrossRef] [PubMed]

W. S. Baron, R. M. Boynton, D. van Norren, “Primate cone sensitivity to flicker during light and dark adaptation as indicated by the foveal local electroretinogram,” Vision Res. 19, 109–116 (1979).
[CrossRef] [PubMed]

1975 (1)

W. Baron, R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. (London) 246, 311–331 (1975).

1972 (2)

W. Ernst, G. B. Arden, “Separation of two PIII components in the rat electroretinogram by a flicker method,” Vision Res. 12, 1759–1761 (1972).
[CrossRef] [PubMed]

V. J. Balcar, G. A. Johnston, “The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices,” J. Neurochem. 19, 2657–2666 (1972).
[CrossRef] [PubMed]

1970 (1)

R. F. Miller, J. E. Dowling, “Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram,” J. Neurophysiol. 33, 323–341 (1970).
[PubMed]

1969 (1)

R. D. Penn, W. A. Hagins, “Signal transmission along retinal rods and the origin of the a-wave,” Nature (London) 223, 201–205 (1969).
[CrossRef]

1965 (1)

K. T. Brown, K. Watanabe, M. Murakami, “The early and late receptor potentials of monkey cones and rods,” Cold Spring Harbor Symp. Quant. Biol. 30, 457–482 (1965).
[CrossRef]

1962 (1)

K. T. Brown, K. Watanabe, “Isolation and identification of a receptor potential from the pure cone fovea of the monkey retina,” Nature (London) 193, 958–960 (1962).
[CrossRef]

1954 (1)

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–63 (1954).
[CrossRef]

Abraham, F. A.

F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).

F. A. Abraham, M. Alpern, “Factors influencing threshold of the fundamental electrical response to sinusoidal excitation of human photoreceptors,” J. Physiol. (London) 357, 151–172 (1984).

Aguilar, M.

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–63 (1954).
[CrossRef]

Alexander, K. R.

N. S. Peachey, K. R. Alexander, D. J. Derlacki, G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8, 145–150 (1992).
[CrossRef] [PubMed]

Alpern, M.

F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).

F. A. Abraham, M. Alpern, “Factors influencing threshold of the fundamental electrical response to sinusoidal excitation of human photoreceptors,” J. Physiol. (London) 357, 151–172 (1984).

Arden, G. B.

M. F. Marmor, G. B. Arden, S. E. Nilsson, E. Zrenner, “Standard for clinical retinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

W. Ernst, G. B. Arden, “Separation of two PIII components in the rat electroretinogram by a flicker method,” Vision Res. 12, 1759–1761 (1972).
[CrossRef] [PubMed]

Balcar, V. J.

V. J. Balcar, G. A. Johnston, “The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices,” J. Neurochem. 19, 2657–2666 (1972).
[CrossRef] [PubMed]

Baron, W.

W. Baron, R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. (London) 246, 311–331 (1975).

Baron, W. S.

W. S. Baron, “Chromatic adaptation and flicker-frequency effects on primate R–G-cone difference signal,” J. Opt. Soc. Am. 72, 1008–1013 (1982).
[CrossRef] [PubMed]

W. J. Donovan, W. S. Baron, “Identification of the R–G-cone difference signal in the corneal electroretinogram of the primate,” J. Opt. Soc. Am. 72, 1014–1020 (1982).
[CrossRef] [PubMed]

W. S. Baron, R. M. Boynton, D. van Norren, “Primate cone sensitivity to flicker during light and dark adaptation as indicated by the foveal local electroretinogram,” Vision Res. 19, 109–116 (1979).
[CrossRef] [PubMed]

W. S. Baron, R. M. Boynton, R. W. Hammon, “Component analysis of the foveal local electroretinogram elicited with sinusoidal flicker,” Vision Res. 19, 479–490 (1979).
[CrossRef] [PubMed]

Boynton, R. M.

W. S. Baron, R. M. Boynton, R. W. Hammon, “Component analysis of the foveal local electroretinogram elicited with sinusoidal flicker,” Vision Res. 19, 479–490 (1979).
[CrossRef] [PubMed]

W. S. Baron, R. M. Boynton, D. van Norren, “Primate cone sensitivity to flicker during light and dark adaptation as indicated by the foveal local electroretinogram,” Vision Res. 19, 109–116 (1979).
[CrossRef] [PubMed]

W. Baron, R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. (London) 246, 311–331 (1975).

Brown, K. T.

K. T. Brown, K. Watanabe, M. Murakami, “The early and late receptor potentials of monkey cones and rods,” Cold Spring Harbor Symp. Quant. Biol. 30, 457–482 (1965).
[CrossRef]

K. T. Brown, K. Watanabe, “Isolation and identification of a receptor potential from the pure cone fovea of the monkey retina,” Nature (London) 193, 958–960 (1962).
[CrossRef]

Bush, R. A.

R. A. Bush, P. A. Sieving, “Monkey intraretinal photopic ERG responses in vivoafter glutamate analogs,” Invest. Ophthalmol. Vis. Sci. Suppl. 36, 445 (1995).

R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Vis. Sci. 35, 635–645 (1994).
[PubMed]

Buzzonetti, L.

B. Falsini, G. Iarossi, V. Porciatti, E. Merendino, A. Fadda, S. Germola, L. Buzzonetti, “Postreceptoral contribution to macular dysfunction in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 35, 4282–4290 (1994).
[PubMed]

Copenhagen, D. R.

S. Nawy, D. R. Copenhagen, “The glutamate analog 2-amino-4-phosphonobutyrate antagonizes synaptic transmission from cones to horizontal cells in goldfish retina,” Proc. Natl. Acad. Sci. (USA) 86, 1726–1730 (1989).
[CrossRef]

S. Nawy, D. R. Copenhagen, “Multiple classes of glutamate receptor on depolarizing bipolar cells in retina,” Nature (London) 325, 56–58 (1987).
[CrossRef]

Creel, D. J.

D. J. Creel, J. M. Wang, K. C. Wong, “Transient blindness associated with transurethral resection of the prostate,” Arch. Ophthalmol. 105, 1537–1539 (1987).
[CrossRef] [PubMed]

Derlacki, D. J.

N. S. Peachey, K. R. Alexander, D. J. Derlacki, G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8, 145–150 (1992).
[CrossRef] [PubMed]

De-Zheng, W.

W. De-Zheng, J. Liang, L. Wu, T. Luo, Y. U. Minzhong, “Quantitative evaluation of flicker ERG waveforms in low vision patients,” Eye Sci. 8, 122–125 (1992).

Donovan, W. J.

Dowling, J. E.

R. F. Miller, J. E. Dowling, “Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram,” J. Neurophysiol. 33, 323–341 (1970).
[PubMed]

Ernst, W.

W. Ernst, G. B. Arden, “Separation of two PIII components in the rat electroretinogram by a flicker method,” Vision Res. 12, 1759–1761 (1972).
[CrossRef] [PubMed]

Faber, D. S.

D. S. Faber, “Analysis of the slow transretinal potentials in response to light,” Ph.D. dissertation (University of New York, at Buffalo, Buffalo, N.Y., 1969).

Fadda, A.

B. Falsini, G. Iarossi, V. Porciatti, E. Merendino, A. Fadda, S. Germola, L. Buzzonetti, “Postreceptoral contribution to macular dysfunction in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 35, 4282–4290 (1994).
[PubMed]

Falsini, B.

B. Falsini, G. Iarossi, V. Porciatti, E. Merendino, A. Fadda, S. Germola, L. Buzzonetti, “Postreceptoral contribution to macular dysfunction in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 35, 4282–4290 (1994).
[PubMed]

Fishman, G. A.

N. S. Peachey, K. R. Alexander, D. J. Derlacki, G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8, 145–150 (1992).
[CrossRef] [PubMed]

Frishman, L. J.

J. G. Robson, L. J. Frishman, “Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram,” Visual Neurosci. 12, 837–850 (1995).
[CrossRef]

Gallemore, R. P.

R. P. Gallemore, E. R. Griff, R. H. Steinberg, “Evidence in support of a photoreceptor origin for the ‘light-peak substance,’ ” Invest. Ophthalmol. Vis. Sci. 29, 566–571 (1988).
[PubMed]

Germola, S.

B. Falsini, G. Iarossi, V. Porciatti, E. Merendino, A. Fadda, S. Germola, L. Buzzonetti, “Postreceptoral contribution to macular dysfunction in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 35, 4282–4290 (1994).
[PubMed]

Gieser, J.

K. Wakabayashi, J. Gieser, P. A. Sieving, “Aspartate separation of the scotopic threshold response (STR) from the photoreceptor a-wave of the cat and monkey ERG,” Invest. Ophthalmol. Vis. Sci. 29, 1615–1622 (1988).
[PubMed]

Granit, R.

R. Granit, Sensory Mechanisms of the Retina (Oxford U. Press, London, 1947).

Greenstein, V.

W. Seiple, K. Holopigian, V. Greenstein, D. C. Hood, “Temporal frequency dependent adaptation at the level of the outer retina in humans,” Vision Res. 32, 2043–2048 (1992).
[CrossRef] [PubMed]

Griff, E. R.

R. P. Gallemore, E. R. Griff, R. H. Steinberg, “Evidence in support of a photoreceptor origin for the ‘light-peak substance,’ ” Invest. Ophthalmol. Vis. Sci. 29, 566–571 (1988).
[PubMed]

Hagins, W. A.

R. D. Penn, W. A. Hagins, “Signal transmission along retinal rods and the origin of the a-wave,” Nature (London) 223, 201–205 (1969).
[CrossRef]

Hammon, R. W.

W. S. Baron, R. M. Boynton, R. W. Hammon, “Component analysis of the foveal local electroretinogram elicited with sinusoidal flicker,” Vision Res. 19, 479–490 (1979).
[CrossRef] [PubMed]

Hanitzsch, R.

R. Hanitzsch, T. Lichtenberger, W.-U. Mättig, “The influence of MgCl2and APB on the light-induced potassium changes and the ERG b-wave of the isolated superfused rat retina,” Invest. Ophthalmol. Vision Res. (to be published).

Holopigian, K.

W. Seiple, K. Holopigian, “The ‘OFF’ response of the human electroretinogram does not contribute to the brief flash ‘b-wave,’” Vis. Neurosci. 11, 667–673 (1994).
[CrossRef] [PubMed]

W. Seiple, K. Holopigian, V. Greenstein, D. C. Hood, “Temporal frequency dependent adaptation at the level of the outer retina in humans,” Vision Res. 32, 2043–2048 (1992).
[CrossRef] [PubMed]

Hood, D. C.

W. Seiple, K. Holopigian, V. Greenstein, D. C. Hood, “Temporal frequency dependent adaptation at the level of the outer retina in humans,” Vision Res. 32, 2043–2048 (1992).
[CrossRef] [PubMed]

Huang, B.

X. Xu, J. Xu, B. Huang, C. T. Livsey, C. J. Karwoski, “Comparison of pharmacological agents (aspartate vs. aminophosphonobutyric plus kynurenic acids) to block synaptic transmission from retinal photoreceptors in frog,” Exp. Eye Res. 52, 691–698 (1991).
[CrossRef] [PubMed]

Iarossi, G.

B. Falsini, G. Iarossi, V. Porciatti, E. Merendino, A. Fadda, S. Germola, L. Buzzonetti, “Postreceptoral contribution to macular dysfunction in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 35, 4282–4290 (1994).
[PubMed]

Johnston, G. A.

V. J. Balcar, G. A. Johnston, “The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices,” J. Neurochem. 19, 2657–2666 (1972).
[CrossRef] [PubMed]

Karwoski, C. J.

X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials. II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994).
[PubMed]

X. Xu, J. Xu, B. Huang, C. T. Livsey, C. J. Karwoski, “Comparison of pharmacological agents (aspartate vs. aminophosphonobutyric plus kynurenic acids) to block synaptic transmission from retinal photoreceptors in frog,” Exp. Eye Res. 52, 691–698 (1991).
[CrossRef] [PubMed]

Kirk, D. B.

F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).

Knapp, A. G.

A. G. Knapp, P. H. Schiller, “The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeys,” Vision Res. 24, 1841–1846 (1984).
[CrossRef]

Liang, J.

W. De-Zheng, J. Liang, L. Wu, T. Luo, Y. U. Minzhong, “Quantitative evaluation of flicker ERG waveforms in low vision patients,” Eye Sci. 8, 122–125 (1992).

Lichtenberger, T.

R. Hanitzsch, T. Lichtenberger, W.-U. Mättig, “The influence of MgCl2and APB on the light-induced potassium changes and the ERG b-wave of the isolated superfused rat retina,” Invest. Ophthalmol. Vision Res. (to be published).

Livsey, C. T.

X. Xu, J. Xu, B. Huang, C. T. Livsey, C. J. Karwoski, “Comparison of pharmacological agents (aspartate vs. aminophosphonobutyric plus kynurenic acids) to block synaptic transmission from retinal photoreceptors in frog,” Exp. Eye Res. 52, 691–698 (1991).
[CrossRef] [PubMed]

Luo, T.

W. De-Zheng, J. Liang, L. Wu, T. Luo, Y. U. Minzhong, “Quantitative evaluation of flicker ERG waveforms in low vision patients,” Eye Sci. 8, 122–125 (1992).

Marmor, M. F.

M. F. Marmor, G. B. Arden, S. E. Nilsson, E. Zrenner, “Standard for clinical retinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

Mättig, W.-U.

R. Hanitzsch, T. Lichtenberger, W.-U. Mättig, “The influence of MgCl2and APB on the light-induced potassium changes and the ERG b-wave of the isolated superfused rat retina,” Invest. Ophthalmol. Vision Res. (to be published).

Merendino, E.

B. Falsini, G. Iarossi, V. Porciatti, E. Merendino, A. Fadda, S. Germola, L. Buzzonetti, “Postreceptoral contribution to macular dysfunction in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 35, 4282–4290 (1994).
[PubMed]

Miller, R. F.

M. M. Slaughter, R. F. Miller, “An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons,” Science 219, 1230–1232 (1983).
[CrossRef] [PubMed]

M. M. Slaughter, R. F. Miller, “2-amino-4-phosphonobutyric acid: a new tool for retina research,” Science 211, 182–185 (1981).
[CrossRef] [PubMed]

R. F. Miller, J. E. Dowling, “Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram,” J. Neurophysiol. 33, 323–341 (1970).
[PubMed]

Minzhong, Y. U.

W. De-Zheng, J. Liang, L. Wu, T. Luo, Y. U. Minzhong, “Quantitative evaluation of flicker ERG waveforms in low vision patients,” Eye Sci. 8, 122–125 (1992).

Murakami, M.

K. T. Brown, K. Watanabe, M. Murakami, “The early and late receptor potentials of monkey cones and rods,” Cold Spring Harbor Symp. Quant. Biol. 30, 457–482 (1965).
[CrossRef]

Murayama, K.

P. A. Sieving, K. Murayama, F. Naarendorp, “Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef] [PubMed]

Naarendorp, F.

P. A. Sieving, K. Murayama, F. Naarendorp, “Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef] [PubMed]

Nawy, S.

S. Nawy, D. R. Copenhagen, “The glutamate analog 2-amino-4-phosphonobutyrate antagonizes synaptic transmission from cones to horizontal cells in goldfish retina,” Proc. Natl. Acad. Sci. (USA) 86, 1726–1730 (1989).
[CrossRef]

S. Nawy, D. R. Copenhagen, “Multiple classes of glutamate receptor on depolarizing bipolar cells in retina,” Nature (London) 325, 56–58 (1987).
[CrossRef]

Newman, E. A.

E. A. Newman, L. L. Odette, “Model of electroretinogram b-wave generation: a test of the K+hypothesis,” J. Neurophysiol. 51, 164–182 (1984).
[PubMed]

Nilsson, S. E.

M. F. Marmor, G. B. Arden, S. E. Nilsson, E. Zrenner, “Standard for clinical retinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

Odette, L. L.

E. A. Newman, L. L. Odette, “Model of electroretinogram b-wave generation: a test of the K+hypothesis,” J. Neurophysiol. 51, 164–182 (1984).
[PubMed]

Peachey, N. S.

N. S. Peachey, K. R. Alexander, D. J. Derlacki, G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8, 145–150 (1992).
[CrossRef] [PubMed]

Penn, R. D.

R. D. Penn, W. A. Hagins, “Signal transmission along retinal rods and the origin of the a-wave,” Nature (London) 223, 201–205 (1969).
[CrossRef]

Porciatti, V.

B. Falsini, G. Iarossi, V. Porciatti, E. Merendino, A. Fadda, S. Germola, L. Buzzonetti, “Postreceptoral contribution to macular dysfunction in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 35, 4282–4290 (1994).
[PubMed]

Robson, J. G.

J. G. Robson, L. J. Frishman, “Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram,” Visual Neurosci. 12, 837–850 (1995).
[CrossRef]

Sandberg, M. A.

A. Weiner, M. A. Sandberg, “Normal change in the foveal cone ERG with increasing duration of light exposure,” Invest. Ophthalmol. Vis. Sci. 32, 2842–2845 (1991).
[PubMed]

Schiller, P. H.

A. G. Knapp, P. H. Schiller, “The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeys,” Vision Res. 24, 1841–1846 (1984).
[CrossRef]

Seiple, W.

W. Seiple, K. Holopigian, “The ‘OFF’ response of the human electroretinogram does not contribute to the brief flash ‘b-wave,’” Vis. Neurosci. 11, 667–673 (1994).
[CrossRef] [PubMed]

W. Seiple, K. Holopigian, V. Greenstein, D. C. Hood, “Temporal frequency dependent adaptation at the level of the outer retina in humans,” Vision Res. 32, 2043–2048 (1992).
[CrossRef] [PubMed]

Sieving, P. A.

R. A. Bush, P. A. Sieving, “Monkey intraretinal photopic ERG responses in vivoafter glutamate analogs,” Invest. Ophthalmol. Vis. Sci. Suppl. 36, 445 (1995).

P. A. Sieving, K. Murayama, F. Naarendorp, “Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef] [PubMed]

R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Vis. Sci. 35, 635–645 (1994).
[PubMed]

K. Wakabayashi, J. Gieser, P. A. Sieving, “Aspartate separation of the scotopic threshold response (STR) from the photoreceptor a-wave of the cat and monkey ERG,” Invest. Ophthalmol. Vis. Sci. 29, 1615–1622 (1988).
[PubMed]

Slaughter, M. M.

N. Tian, M. M. Slaughter, “Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram,” Vision Res. 35, 1359–1364 (1995).
[CrossRef] [PubMed]

R. A. Stockton, M. M. Slaughter, “B-wave of the electroretinogram: a reflection of on bipolar cell activity,” J. Gen. Physiol. 93, 101–122 (1989).
[CrossRef] [PubMed]

M. M. Slaughter, R. F. Miller, “An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons,” Science 219, 1230–1232 (1983).
[CrossRef] [PubMed]

M. M. Slaughter, R. F. Miller, “2-amino-4-phosphonobutyric acid: a new tool for retina research,” Science 211, 182–185 (1981).
[CrossRef] [PubMed]

Steinberg, R. H.

R. P. Gallemore, E. R. Griff, R. H. Steinberg, “Evidence in support of a photoreceptor origin for the ‘light-peak substance,’ ” Invest. Ophthalmol. Vis. Sci. 29, 566–571 (1988).
[PubMed]

Stiles, W. S.

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–63 (1954).
[CrossRef]

Stockton, R. A.

R. A. Stockton, M. M. Slaughter, “B-wave of the electroretinogram: a reflection of on bipolar cell activity,” J. Gen. Physiol. 93, 101–122 (1989).
[CrossRef] [PubMed]

Tian, N.

N. Tian, M. M. Slaughter, “Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram,” Vision Res. 35, 1359–1364 (1995).
[CrossRef] [PubMed]

van Norren, D.

W. S. Baron, R. M. Boynton, D. van Norren, “Primate cone sensitivity to flicker during light and dark adaptation as indicated by the foveal local electroretinogram,” Vision Res. 19, 109–116 (1979).
[CrossRef] [PubMed]

Wakabayashi, K.

K. Wakabayashi, J. Gieser, P. A. Sieving, “Aspartate separation of the scotopic threshold response (STR) from the photoreceptor a-wave of the cat and monkey ERG,” Invest. Ophthalmol. Vis. Sci. 29, 1615–1622 (1988).
[PubMed]

Wang, J. M.

D. J. Creel, J. M. Wang, K. C. Wong, “Transient blindness associated with transurethral resection of the prostate,” Arch. Ophthalmol. 105, 1537–1539 (1987).
[CrossRef] [PubMed]

Watanabe, K.

K. T. Brown, K. Watanabe, M. Murakami, “The early and late receptor potentials of monkey cones and rods,” Cold Spring Harbor Symp. Quant. Biol. 30, 457–482 (1965).
[CrossRef]

K. T. Brown, K. Watanabe, “Isolation and identification of a receptor potential from the pure cone fovea of the monkey retina,” Nature (London) 193, 958–960 (1962).
[CrossRef]

Weiner, A.

A. Weiner, M. A. Sandberg, “Normal change in the foveal cone ERG with increasing duration of light exposure,” Invest. Ophthalmol. Vis. Sci. 32, 2842–2845 (1991).
[PubMed]

Wong, K. C.

D. J. Creel, J. M. Wang, K. C. Wong, “Transient blindness associated with transurethral resection of the prostate,” Arch. Ophthalmol. 105, 1537–1539 (1987).
[CrossRef] [PubMed]

Wu, L.

W. De-Zheng, J. Liang, L. Wu, T. Luo, Y. U. Minzhong, “Quantitative evaluation of flicker ERG waveforms in low vision patients,” Eye Sci. 8, 122–125 (1992).

Wu, S. M.

X. L. Yang, S. M. Wu, “Effects of CNQX, APB, PDA and kynurenate on horizontal cells of the tiger salamander retina,” Vis. Neurosci. 3, 207–212 (1989).
[CrossRef] [PubMed]

Xu, J.

X. Xu, J. Xu, B. Huang, C. T. Livsey, C. J. Karwoski, “Comparison of pharmacological agents (aspartate vs. aminophosphonobutyric plus kynurenic acids) to block synaptic transmission from retinal photoreceptors in frog,” Exp. Eye Res. 52, 691–698 (1991).
[CrossRef] [PubMed]

Xu, X.

X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials. II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994).
[PubMed]

X. Xu, J. Xu, B. Huang, C. T. Livsey, C. J. Karwoski, “Comparison of pharmacological agents (aspartate vs. aminophosphonobutyric plus kynurenic acids) to block synaptic transmission from retinal photoreceptors in frog,” Exp. Eye Res. 52, 691–698 (1991).
[CrossRef] [PubMed]

Yang, X. L.

X. L. Yang, S. M. Wu, “Effects of CNQX, APB, PDA and kynurenate on horizontal cells of the tiger salamander retina,” Vis. Neurosci. 3, 207–212 (1989).
[CrossRef] [PubMed]

Zrenner, E.

M. F. Marmor, G. B. Arden, S. E. Nilsson, E. Zrenner, “Standard for clinical retinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

Arch. Ophthalmol. (2)

D. J. Creel, J. M. Wang, K. C. Wong, “Transient blindness associated with transurethral resection of the prostate,” Arch. Ophthalmol. 105, 1537–1539 (1987).
[CrossRef] [PubMed]

M. F. Marmor, G. B. Arden, S. E. Nilsson, E. Zrenner, “Standard for clinical retinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

Cold Spring Harbor Symp. Quant. Biol. (1)

K. T. Brown, K. Watanabe, M. Murakami, “The early and late receptor potentials of monkey cones and rods,” Cold Spring Harbor Symp. Quant. Biol. 30, 457–482 (1965).
[CrossRef]

Exp. Eye Res. (1)

X. Xu, J. Xu, B. Huang, C. T. Livsey, C. J. Karwoski, “Comparison of pharmacological agents (aspartate vs. aminophosphonobutyric plus kynurenic acids) to block synaptic transmission from retinal photoreceptors in frog,” Exp. Eye Res. 52, 691–698 (1991).
[CrossRef] [PubMed]

Eye Sci. (1)

W. De-Zheng, J. Liang, L. Wu, T. Luo, Y. U. Minzhong, “Quantitative evaluation of flicker ERG waveforms in low vision patients,” Eye Sci. 8, 122–125 (1992).

Invest. Ophthalmol. Vis. Sci. (5)

B. Falsini, G. Iarossi, V. Porciatti, E. Merendino, A. Fadda, S. Germola, L. Buzzonetti, “Postreceptoral contribution to macular dysfunction in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 35, 4282–4290 (1994).
[PubMed]

R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Vis. Sci. 35, 635–645 (1994).
[PubMed]

A. Weiner, M. A. Sandberg, “Normal change in the foveal cone ERG with increasing duration of light exposure,” Invest. Ophthalmol. Vis. Sci. 32, 2842–2845 (1991).
[PubMed]

R. P. Gallemore, E. R. Griff, R. H. Steinberg, “Evidence in support of a photoreceptor origin for the ‘light-peak substance,’ ” Invest. Ophthalmol. Vis. Sci. 29, 566–571 (1988).
[PubMed]

K. Wakabayashi, J. Gieser, P. A. Sieving, “Aspartate separation of the scotopic threshold response (STR) from the photoreceptor a-wave of the cat and monkey ERG,” Invest. Ophthalmol. Vis. Sci. 29, 1615–1622 (1988).
[PubMed]

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

R. A. Bush, P. A. Sieving, “Monkey intraretinal photopic ERG responses in vivoafter glutamate analogs,” Invest. Ophthalmol. Vis. Sci. Suppl. 36, 445 (1995).

J. Gen. Physiol. (1)

R. A. Stockton, M. M. Slaughter, “B-wave of the electroretinogram: a reflection of on bipolar cell activity,” J. Gen. Physiol. 93, 101–122 (1989).
[CrossRef] [PubMed]

J. Neurochem. (1)

V. J. Balcar, G. A. Johnston, “The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices,” J. Neurochem. 19, 2657–2666 (1972).
[CrossRef] [PubMed]

J. Neurophysiol. (3)

E. A. Newman, L. L. Odette, “Model of electroretinogram b-wave generation: a test of the K+hypothesis,” J. Neurophysiol. 51, 164–182 (1984).
[PubMed]

X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials. II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994).
[PubMed]

R. F. Miller, J. E. Dowling, “Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram,” J. Neurophysiol. 33, 323–341 (1970).
[PubMed]

J. Opt. Soc. Am. (2)

J. Physiol. (London) (3)

F. A. Abraham, M. Alpern, “Factors influencing threshold of the fundamental electrical response to sinusoidal excitation of human photoreceptors,” J. Physiol. (London) 357, 151–172 (1984).

F. A. Abraham, M. Alpern, D. B. Kirk, “Electroretinograms evoked by sinusoidal excitation of human cones,” J. Physiol. (London) 363, 135–150 (1985).

W. Baron, R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. (London) 246, 311–331 (1975).

Nature (London) (3)

K. T. Brown, K. Watanabe, “Isolation and identification of a receptor potential from the pure cone fovea of the monkey retina,” Nature (London) 193, 958–960 (1962).
[CrossRef]

R. D. Penn, W. A. Hagins, “Signal transmission along retinal rods and the origin of the a-wave,” Nature (London) 223, 201–205 (1969).
[CrossRef]

S. Nawy, D. R. Copenhagen, “Multiple classes of glutamate receptor on depolarizing bipolar cells in retina,” Nature (London) 325, 56–58 (1987).
[CrossRef]

Opt. Acta (1)

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–63 (1954).
[CrossRef]

Proc. Natl. Acad. Sci. (USA) (1)

S. Nawy, D. R. Copenhagen, “The glutamate analog 2-amino-4-phosphonobutyrate antagonizes synaptic transmission from cones to horizontal cells in goldfish retina,” Proc. Natl. Acad. Sci. (USA) 86, 1726–1730 (1989).
[CrossRef]

Science (2)

M. M. Slaughter, R. F. Miller, “2-amino-4-phosphonobutyric acid: a new tool for retina research,” Science 211, 182–185 (1981).
[CrossRef] [PubMed]

M. M. Slaughter, R. F. Miller, “An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons,” Science 219, 1230–1232 (1983).
[CrossRef] [PubMed]

Vis. Neurosci. (4)

W. Seiple, K. Holopigian, “The ‘OFF’ response of the human electroretinogram does not contribute to the brief flash ‘b-wave,’” Vis. Neurosci. 11, 667–673 (1994).
[CrossRef] [PubMed]

X. L. Yang, S. M. Wu, “Effects of CNQX, APB, PDA and kynurenate on horizontal cells of the tiger salamander retina,” Vis. Neurosci. 3, 207–212 (1989).
[CrossRef] [PubMed]

N. S. Peachey, K. R. Alexander, D. J. Derlacki, G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8, 145–150 (1992).
[CrossRef] [PubMed]

P. A. Sieving, K. Murayama, F. Naarendorp, “Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef] [PubMed]

Vision Res. (6)

A. G. Knapp, P. H. Schiller, “The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeys,” Vision Res. 24, 1841–1846 (1984).
[CrossRef]

W. Seiple, K. Holopigian, V. Greenstein, D. C. Hood, “Temporal frequency dependent adaptation at the level of the outer retina in humans,” Vision Res. 32, 2043–2048 (1992).
[CrossRef] [PubMed]

W. S. Baron, R. M. Boynton, R. W. Hammon, “Component analysis of the foveal local electroretinogram elicited with sinusoidal flicker,” Vision Res. 19, 479–490 (1979).
[CrossRef] [PubMed]

W. S. Baron, R. M. Boynton, D. van Norren, “Primate cone sensitivity to flicker during light and dark adaptation as indicated by the foveal local electroretinogram,” Vision Res. 19, 109–116 (1979).
[CrossRef] [PubMed]

W. Ernst, G. B. Arden, “Separation of two PIII components in the rat electroretinogram by a flicker method,” Vision Res. 12, 1759–1761 (1972).
[CrossRef] [PubMed]

N. Tian, M. M. Slaughter, “Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram,” Vision Res. 35, 1359–1364 (1995).
[CrossRef] [PubMed]

Visual Neurosci. (1)

J. G. Robson, L. J. Frishman, “Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram,” Visual Neurosci. 12, 837–850 (1995).
[CrossRef]

Other (3)

R. Hanitzsch, T. Lichtenberger, W.-U. Mättig, “The influence of MgCl2and APB on the light-induced potassium changes and the ERG b-wave of the isolated superfused rat retina,” Invest. Ophthalmol. Vision Res. (to be published).

R. Granit, Sensory Mechanisms of the Retina (Oxford U. Press, London, 1947).

D. S. Faber, “Analysis of the slow transretinal potentials in response to light,” Ph.D. dissertation (University of New York, at Buffalo, Buffalo, N.Y., 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Primate photopic ERG responses to 200-ms, 15-ms, and 33-Hz square-wave stimuli. (a) The 200-ms stimulus resulted in a clear separation of the b wave and the d wave. (b) These two waves merged into a single wave with a short stimulus. The bottom two traces are expanded to show more clearly the relationship in the timing between (c) the 15-ms single-flash response and (d) the response to the 33-Hz square-wave stimulus. All the stimuli were 3.8 log Td on a steady background of 3.3 log Td. Recordings were from animal A. The stimulus trace below each ERG was recorded from a photodiode.

Fig. 2
Fig. 2

Effect of APB on the primate photopic ERG. APB (a) suppressed the true b wave (see 200-ms condition) and (b) uncovered the d-wave contribution to the response to 15-ms flashes, which (c) appeared 10 ms after the time of the combined b-wave and d-wave peak in the control. (d) The positive peak of the 33-Hz flicker response was also delayed by the same amount. Stimuli were 3.8 log Td on a steady background of 3.3 log Td. Data are from the same eye and the same recording session as in Fig. 1.

Fig. 3
Fig. 3

Effect of PDA on the primate photopic ERG. (a) Control response: PDA eliminated the a wave and enhanced the b wave for both (b) the 200-ms and (c) the 15-ms flashes. (d) The 33-Hz flicker response had timing characteristics similar to those of the control. The thin traces are the control in (c), (d). Stimuli were 3.8 log Td on a steady background of 3.3 log Td.

Fig. 4
Fig. 4

Combined effect of APB + PDA on the primate photopic ERG. (a)–(c) This drug combination eliminated or reduced the fast phasic responses (a, b, d waves) that normally occur in the single-flash ERG. (d) Very little response remained after drugs were given to isolate the direct cone contribution to the 33-Hz flicker ERG. Stimuli were 3.8 log Td on a steady background of 3.3 log Td. Data are from the same eye and the same recording session as in Figs. 1 and 2.

Fig. 5
Fig. 5

Effect of ASP on the primate photopic ERG. Using ASP to isolate the photoreceptor contribution to the ERG gave results similar to those for APB +PDA (Fig. 4), including greatly reducing the photopic 33-Hz flicker amplitude. Stimuli were 3.8 log Td on a steady background of 3.3 log Td. Recordings were from animal B.

Fig. 6
Fig. 6

Primate photopic ERG responses to bright 5.8-log-Td stimuli (on a steady background of 3.3 log Td), before and after (a) APB or (b) APB + PDA. APB eliminated the b wave, had little effect on the a wave or the OFF response, and greatly reduced the flicker response. APB + PDA reduced the maximum a-wave amplitude but left most of the leading edge unchanged. These drugs also reduced the OFF response slightly and further reduced the flicker. Responses shown in (a) are from animal C, and responses shown in (b) are from animal D.

Fig. 7
Fig. 7

V-log I plot of the monkey photopic ERG (a) a wave (data from Bush and Sieving15) and (b) 33-Hz flicker response before and after pharmacological isolation of photoreceptor contributions by application of APB + PDA. Most of the a wave originates in the proximal retina at intensities between 2 and 4 log Td. The true a wave from photoreceptors first becomes evident near 4 log Td and progressively dominates the response for brighter stimuli. Note that the bright mean luminance of the flicker above 5 log Td may reduce the control 33-Hz flicker response.

Fig. 8
Fig. 8

Primate photopic response elicited by photostrobe flashes (nominally 10–30 μs) at 33 Hz, before and after ASP. The stimulus was a Grass PS-22 xenon photostrobe with the driver unit at I16 setting with an intensity of 2.1 log Td s on a steady background of 3.3 log Td. The mean luminance was 2.6 cd/m2 (2.1 log Td). The timing of individual flashes is shown by arrows at bottom. Recordings were from animal B, same eye and same recording session as in Fig. 5.

Metrics