Abstract

We present a method that can efficiently restore large images, blurred possibly nonuniformly and contaminated with noise, by use of a scanning singular-value-decomposition (SVD) method. Such an approach bypasses the prohibitive storage and speed limitations of the SVD method, thus, to our knowledge for the first time, making possible the restoration of reasonably sized images. We make use of the linear and local nature of the point spread function (PSF) to scan the image and restore it in the same raster without incurring blocking effects that are due to the overlap in neighboring reconstruction areas. The increase in speed compared with the conventional SVD approach can be many orders of magnitude, depending on the ratio of the point-spread blur to the image size. For example, if the linear extent of the PSF is one-eighth that of the image, a speed-up factor greater than 106 is achieved. A similar but less accurate solution to the problem of spatially variant blur by use of scanning Fourier transforms, which allows an even faster solution, is also described.

© 1996 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A computational method for the restoration of images with an unknown, spatially-varying blur

Johnathan Bardsley, Stuart Jefferies, James Nagy, and Robert Plemmons
Opt. Express 14(5) 1767-1782 (2006)

Trajectories by a blurred auxiliary system

Iftach Klapp and David Mendlovic
J. Opt. Soc. Am. A 28(9) 1796-1804 (2011)

Experimental results for improving the matrix condition using a hybrid optical system

Iftach Klapp and David Mendlovic
J. Opt. Soc. Am. A 29(3) 331-343 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription