Abstract

We have developed an optical technique for measuring the in vivo absorption of the human crystalline lens based on using the retina as a reflector for a double-pass measurement of lens density. We compare results obtained by the reflectometric technique with results obtained in the same subjects by a psychophysical method. We find that the estimates obtained with the two techniques are highly correlated, and both measure similar effects of aging on the optical density of the lens. In addition, we show that the significant variations in retinal reflectance attributable to differences in ocular pigmentation and drusen have only a minor effect on the estimate of lens optical density. However, correcting retinal reflectances for the effect of lens absorption shows that the effect of lens absorption may be overestimated with both methods. The overestimation may arise from inaccuracies in the shape of the assumed lens spectrum.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Despite the fact that we measure optical media density, in this paper we will use principally the terminology “(crystalline) lens” rather than “ocular media.” The reasons are brevity and the fact that light loss in the media is caused principally by lens absorption.2
  2. E. A. Boetner, J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. 1, 776–799 (1962).
  3. R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).
    [PubMed]
  4. D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [Crossref]
  5. J. S. Werner, “Development of scoptopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247–258 (1982).
    [Crossref] [PubMed]
  6. J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [Crossref] [PubMed]
  7. F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
    [Crossref] [PubMed]
  8. S. Coren, J. S. Girgus, “Density of human lens pigmentation: in vivomeasures over an extended age range,” Vision Res. 12, 343–346 (1972).
    [Crossref] [PubMed]
  9. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  10. P. A. Sample, F. E. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: In vivo assessment of light absorption in 84 eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
    [PubMed]
  11. G. L. Savage, G. Hagerstrom-Portnoy, A. J. Adams, S. E. Hewlet, “Age changes in the optical density of human ocular media,” Clin. Vis. Sci. 8, 97–108 (1993).
  12. M. Alpern, S. Thompson, M. Lee, “Spectral transmittance of visible light by the living human eye,” J. Opt. Soc. Am. 55, 723–727 (1965).
    [Crossref] [PubMed]
  13. R. C. Zeimer, J. M. Noth, “A new method of measuring in vivo the lens transmittance, and study of lens scatter, fluorescence and transmittance,” Ophthalmic Res. 16, 246–255 (1984).
    [Crossref] [PubMed]
  14. J. A. van Best, E. W. S. J. Tjin, A. Tsoi, J. P. Boot, J. A. Oosterhuis, “In vivo assessment of lens transmission for blue-green light by autofluorescence measurement,” Ophthalmic Res. 17, 90–95 (1985).
    [Crossref] [PubMed]
  15. H. Shu, D. Howard, C. Johnson, “Development of a noninvasive video-based method of measuring transmission properties of the human lens,” in Noninvasive Assessment of the Visual System, Vol. 3 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 151–154.
  16. J. Xu, J. J. Pokorny, V. C. Smith, “Estimation of lens transmittance from optic disk reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 436, 796 (1995).
  17. F. C. Delori, “Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus,” Appl. Opt. 33, 7439–7452 (1994).
    [Crossref] [PubMed]
  18. F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivofluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36, 718–729 (1995).
    [PubMed]
  19. F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
    [Crossref] [PubMed]
  20. D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
    [Crossref] [PubMed]
  21. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [Crossref] [PubMed]
  22. R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. 186, 175–186 (1966).
    [PubMed]
  23. R. Rohler, U. Miller, M. Aberl, “Zur messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
    [Crossref]
  24. W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
    [Crossref] [PubMed]
  25. J. Gloster, “Fundus reflectometry in the study of the choroidal circulation,” Int. Ophthalmol. 6, 109–118 (1983).
    [Crossref] [PubMed]
  26. J.-M. Gorrand, R. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
    [Crossref] [PubMed]
  27. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
    [Crossref] [PubMed]
  28. T. T. J. M. Berendschot, J. van de Kraats, D. van Norren, “A new model for spectral fundus reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 4 35, 1803 (1994).
  29. R. W. Knighton, S. G. Jacobson, M. I. Roman, “Specular reflection from the surface of the retina,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems, S. N. Joffe, N. R. Goldblatt, K. Atsumi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1066, 10–17 (1989).
    [Crossref]
  30. R. W. Knighton, S. G. Jacobson, C. M. Kemp, “The spectral reflectance of the nerve fiber layer of the macaque retina,” Invest. Ophthalmol. Vis. Sci. 30, 2393–2402 (1989).
  31. J. J. Weiter, F. C. Delori, G. Wing, K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
    [PubMed]
  32. S. Y. Schmidt, R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 27, 1063–1067 (1986).
    [PubMed]
  33. All spectral data compiled from the literature for use in this study were interpolated to every nanometer by cubic spline techniques. Curve fitting was also used over restricted spectral ranges.
  34. J. J. Vos, “On mechanisms of glare,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 1963).
  35. O. W. van Assendelft, Spectroscopy of Hemoglobin Derivatives (Thomas, Springfield, Ill., 1970).
  36. V.-P. Gabel, R. Birngruber, F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Exerpta Med. Int. Congr. Ser. 14, 658–662 (1978).
  37. D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
    [PubMed]
  38. V. C. Smith, J. Pokorny, “Psychological estimates of optical density in human cones,” Vision Res. 13, 1199–1202 (1973).
    [Crossref] [PubMed]
  39. P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
    [Crossref] [PubMed]
  40. The quantity δDDis the logarithm of the ratio of the reflectance in eyes with dense drusen to that in eyes without visible drusen. The spectral variation of δDDshould not be confused with the reflectance spectrum of drusen.
  41. R. C. Eagle, A. C. Lucier, V. B. Bernadino, M. Janoff, “Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study,” Ophthalmology 87, 1189–1200 (1980).
    [PubMed]
  42. F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, J. J. Weiter, “In vivomeasurement of lipofuscin in Stargardt’s disease/fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36, 2327–2331 (1995).
    [PubMed]
  43. Lens-corrected lipofuscin in the five Stargardt’s patients42 is equal, on average, to those of 42 ± 12-years older normals (range 30–60 years). The lens aging rate for the entire population is ≈0.0058 D.U./yr. Assuming that the observed tendency for increased lens estimate in Stargardt’s (≈0.03 D.U; Fig. 8) is due solely to higher lipofuscin absorption, then the lens aging rate in absence of this effect would be ≈0.0058 − (0.03/42) or ≈0.0051 D.U./yr. Lipofuscin absorption would then cause on overestimation of ≈14% in lens density (worst-case analysis).
  44. N. Bulow, “Light scattering by pigment epithelium granules in the human retina,” Acta Ophthalmol. 46, 1048–1053 (1968).
  45. A. E. Elsner, J. J. Weiter, A. E. Jalkh, “New devices for retinal imaging and functional evaluation,” in Practical Atlas of Retinal Disease and Therapy, W. R. Freeman, ed. (Raven, New York, 1993), pp. 19–35.
  46. L. Feeney-Burns, E. S. Hilderbrand, S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25, 192–200 (1984).
  47. M. D. Boulton, F. Dayhaw-Barker, P. Ramponi, R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291–1303 (1990).
    [Crossref] [PubMed]
  48. G. L. Wing, G. C. Blanchard, J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17, 601–607 (1978).
    [PubMed]
  49. G. E. Eldred, M. L. Katz, “Fluorophores of the human retinal pigment epithelium: separation and spectral characterization,” Exp. Eye Res. 47, 71–86 (1988).
    [Crossref] [PubMed]
  50. S. H. Sarks, “Ageing and degeneration of the macular region: a clinico-pathological study,” Br. J. Ophthalmol. 60, 324–341 (1976).
    [Crossref] [PubMed]
  51. D. Pauleikhoff, C. A. Harper, J. Marshall, A. C. Bird, “Aging changes in Bruch’s membrane,” Ophthalmology 97, 171–178 (1990).
    [PubMed]

1995 (4)

J. Xu, J. J. Pokorny, V. C. Smith, “Estimation of lens transmittance from optic disk reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 436, 796 (1995).

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivofluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36, 718–729 (1995).
[PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[Crossref] [PubMed]

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, J. J. Weiter, “In vivomeasurement of lipofuscin in Stargardt’s disease/fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36, 2327–2331 (1995).
[PubMed]

1994 (2)

T. T. J. M. Berendschot, J. van de Kraats, D. van Norren, “A new model for spectral fundus reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 4 35, 1803 (1994).

F. C. Delori, “Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus,” Appl. Opt. 33, 7439–7452 (1994).
[Crossref] [PubMed]

1993 (1)

G. L. Savage, G. Hagerstrom-Portnoy, A. J. Adams, S. E. Hewlet, “Age changes in the optical density of human ocular media,” Clin. Vis. Sci. 8, 97–108 (1993).

1990 (2)

M. D. Boulton, F. Dayhaw-Barker, P. Ramponi, R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291–1303 (1990).
[Crossref] [PubMed]

D. Pauleikhoff, C. A. Harper, J. Marshall, A. C. Bird, “Aging changes in Bruch’s membrane,” Ophthalmology 97, 171–178 (1990).
[PubMed]

1989 (2)

R. W. Knighton, S. G. Jacobson, C. M. Kemp, “The spectral reflectance of the nerve fiber layer of the macaque retina,” Invest. Ophthalmol. Vis. Sci. 30, 2393–2402 (1989).

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[Crossref] [PubMed]

1988 (3)

G. E. Eldred, M. L. Katz, “Fluorophores of the human retinal pigment epithelium: separation and spectral characterization,” Exp. Eye Res. 47, 71–86 (1988).
[Crossref] [PubMed]

P. A. Sample, F. E. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: In vivo assessment of light absorption in 84 eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).
[PubMed]

1987 (1)

1986 (3)

J. J. Weiter, F. C. Delori, G. Wing, K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

S. Y. Schmidt, R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 27, 1063–1067 (1986).
[PubMed]

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[Crossref] [PubMed]

1985 (1)

J. A. van Best, E. W. S. J. Tjin, A. Tsoi, J. P. Boot, J. A. Oosterhuis, “In vivo assessment of lens transmission for blue-green light by autofluorescence measurement,” Ophthalmic Res. 17, 90–95 (1985).
[Crossref] [PubMed]

1984 (4)

R. C. Zeimer, J. M. Noth, “A new method of measuring in vivo the lens transmittance, and study of lens scatter, fluorescence and transmittance,” Ophthalmic Res. 16, 246–255 (1984).
[Crossref] [PubMed]

J.-M. Gorrand, R. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[Crossref] [PubMed]

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

L. Feeney-Burns, E. S. Hilderbrand, S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25, 192–200 (1984).

1983 (1)

J. Gloster, “Fundus reflectometry in the study of the choroidal circulation,” Int. Ophthalmol. 6, 109–118 (1983).
[Crossref] [PubMed]

1982 (1)

1980 (1)

R. C. Eagle, A. C. Lucier, V. B. Bernadino, M. Janoff, “Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study,” Ophthalmology 87, 1189–1200 (1980).
[PubMed]

1978 (2)

V.-P. Gabel, R. Birngruber, F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Exerpta Med. Int. Congr. Ser. 14, 658–662 (1978).

G. L. Wing, G. C. Blanchard, J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17, 601–607 (1978).
[PubMed]

1977 (1)

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[Crossref] [PubMed]

1976 (2)

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref] [PubMed]

S. H. Sarks, “Ageing and degeneration of the macular region: a clinico-pathological study,” Br. J. Ophthalmol. 60, 324–341 (1976).
[Crossref] [PubMed]

1974 (2)

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[Crossref] [PubMed]

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

1973 (1)

V. C. Smith, J. Pokorny, “Psychological estimates of optical density in human cones,” Vision Res. 13, 1199–1202 (1973).
[Crossref] [PubMed]

1972 (1)

S. Coren, J. S. Girgus, “Density of human lens pigmentation: in vivomeasures over an extended age range,” Vision Res. 12, 343–346 (1972).
[Crossref] [PubMed]

1969 (1)

R. Rohler, U. Miller, M. Aberl, “Zur messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
[Crossref]

1968 (1)

N. Bulow, “Light scattering by pigment epithelium granules in the human retina,” Acta Ophthalmol. 46, 1048–1053 (1968).

1966 (1)

R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. 186, 175–186 (1966).
[PubMed]

1965 (1)

1962 (1)

E. A. Boetner, J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. 1, 776–799 (1962).

1959 (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[Crossref] [PubMed]

Aberl, M.

R. Rohler, U. Miller, M. Aberl, “Zur messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
[Crossref]

Adams, A. J.

G. L. Savage, G. Hagerstrom-Portnoy, A. J. Adams, S. E. Hewlet, “Age changes in the optical density of human ocular media,” Clin. Vis. Sci. 8, 97–108 (1993).

Alfieri, R.

J.-M. Gorrand, R. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[Crossref] [PubMed]

Alpern, M.

Arend, O.

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivofluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36, 718–729 (1995).
[PubMed]

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, J. J. Weiter, “In vivomeasurement of lipofuscin in Stargardt’s disease/fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36, 2327–2331 (1995).
[PubMed]

Auran, J. D.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

Berendschot, T. T. J. M.

T. T. J. M. Berendschot, J. van de Kraats, D. van Norren, “A new model for spectral fundus reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 4 35, 1803 (1994).

Bernadino, V. B.

R. C. Eagle, A. C. Lucier, V. B. Bernadino, M. Janoff, “Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study,” Ophthalmology 87, 1189–1200 (1980).
[PubMed]

Bird, A. C.

D. Pauleikhoff, C. A. Harper, J. Marshall, A. C. Bird, “Aging changes in Bruch’s membrane,” Ophthalmology 97, 171–178 (1990).
[PubMed]

Birngruber, R.

V.-P. Gabel, R. Birngruber, F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Exerpta Med. Int. Congr. Ser. 14, 658–662 (1978).

Blanchard, G. C.

G. L. Wing, G. C. Blanchard, J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17, 601–607 (1978).
[PubMed]

Boetner, E. A.

E. A. Boetner, J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. 1, 776–799 (1962).

Boire, J.-Y.

J.-M. Gorrand, R. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[Crossref] [PubMed]

Boot, J. P.

J. A. van Best, E. W. S. J. Tjin, A. Tsoi, J. P. Boot, J. A. Oosterhuis, “In vivo assessment of lens transmission for blue-green light by autofluorescence measurement,” Ophthalmic Res. 17, 90–95 (1985).
[Crossref] [PubMed]

Boulton, M. D.

M. D. Boulton, F. Dayhaw-Barker, P. Ramponi, R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291–1303 (1990).
[Crossref] [PubMed]

Boynton, R. M.

P. A. Sample, F. E. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: In vivo assessment of light absorption in 84 eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

Brown, P. K.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

Bulow, N.

N. Bulow, “Light scattering by pigment epithelium granules in the human retina,” Acta Ophthalmol. 46, 1048–1053 (1968).

Charman, W. N.

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref] [PubMed]

Coren, S.

S. Coren, J. S. Girgus, “Density of human lens pigmentation: in vivomeasures over an extended age range,” Vision Res. 12, 343–346 (1972).
[Crossref] [PubMed]

Cubeddu, R.

M. D. Boulton, F. Dayhaw-Barker, P. Ramponi, R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291–1303 (1990).
[Crossref] [PubMed]

Dayhaw-Barker, F.

M. D. Boulton, F. Dayhaw-Barker, P. Ramponi, R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291–1303 (1990).
[Crossref] [PubMed]

Delori, F. C.

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, J. J. Weiter, “In vivomeasurement of lipofuscin in Stargardt’s disease/fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36, 2327–2331 (1995).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivofluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36, 718–729 (1995).
[PubMed]

F. C. Delori, “Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus,” Appl. Opt. 33, 7439–7452 (1994).
[Crossref] [PubMed]

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[Crossref] [PubMed]

J. J. Weiter, F. C. Delori, G. Wing, K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[Crossref] [PubMed]

Dorey, C. K.

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivofluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36, 718–729 (1995).
[PubMed]

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, J. J. Weiter, “In vivomeasurement of lipofuscin in Stargardt’s disease/fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36, 2327–2331 (1995).
[PubMed]

Eagle, R. C.

R. C. Eagle, A. C. Lucier, V. B. Bernadino, M. Janoff, “Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study,” Ophthalmology 87, 1189–1200 (1980).
[PubMed]

Eldred, G. E.

G. E. Eldred, M. L. Katz, “Fluorophores of the human retinal pigment epithelium: separation and spectral characterization,” Exp. Eye Res. 47, 71–86 (1988).
[Crossref] [PubMed]

Eldridge, S.

L. Feeney-Burns, E. S. Hilderbrand, S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25, 192–200 (1984).

Elsner, A. E.

A. E. Elsner, J. J. Weiter, A. E. Jalkh, “New devices for retinal imaging and functional evaluation,” in Practical Atlas of Retinal Disease and Therapy, W. R. Freeman, ed. (Raven, New York, 1993), pp. 19–35.

Esterson, F. E.

P. A. Sample, F. E. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: In vivo assessment of light absorption in 84 eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

Feeney-Burns, L.

L. Feeney-Burns, E. S. Hilderbrand, S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25, 192–200 (1984).

Fitch, K. A.

J. J. Weiter, F. C. Delori, G. Wing, K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Francisco, R.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[Crossref] [PubMed]

Fujimoto, J. G.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[Crossref] [PubMed]

Gabel, V.-P.

V.-P. Gabel, R. Birngruber, F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Exerpta Med. Int. Congr. Ser. 14, 658–662 (1978).

Girgus, J. S.

S. Coren, J. S. Girgus, “Density of human lens pigmentation: in vivomeasures over an extended age range,” Vision Res. 12, 343–346 (1972).
[Crossref] [PubMed]

Gloster, J.

J. Gloster, “Fundus reflectometry in the study of the choroidal circulation,” Int. Ophthalmol. 6, 109–118 (1983).
[Crossref] [PubMed]

Goger, D. G.

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, J. J. Weiter, “In vivomeasurement of lipofuscin in Stargardt’s disease/fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36, 2327–2331 (1995).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivofluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36, 718–729 (1995).
[PubMed]

Gorrand, J.-M.

J.-M. Gorrand, R. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[Crossref] [PubMed]

Gragoudas, E. S.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[Crossref] [PubMed]

Hagerstrom-Portnoy, G.

G. L. Savage, G. Hagerstrom-Portnoy, A. J. Adams, S. E. Hewlet, “Age changes in the optical density of human ocular media,” Clin. Vis. Sci. 8, 97–108 (1993).

Harper, C. A.

D. Pauleikhoff, C. A. Harper, J. Marshall, A. C. Bird, “Aging changes in Bruch’s membrane,” Ophthalmology 97, 171–178 (1990).
[PubMed]

Hee, M. R.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[Crossref] [PubMed]

Hewlet, S. E.

G. L. Savage, G. Hagerstrom-Portnoy, A. J. Adams, S. E. Hewlet, “Age changes in the optical density of human ocular media,” Clin. Vis. Sci. 8, 97–108 (1993).

Hilderbrand, E. S.

L. Feeney-Burns, E. S. Hilderbrand, S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25, 192–200 (1984).

Hillenkamp, F.

V.-P. Gabel, R. Birngruber, F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Exerpta Med. Int. Congr. Ser. 14, 658–662 (1978).

Howard, D.

H. Shu, D. Howard, C. Johnson, “Development of a noninvasive video-based method of measuring transmission properties of the human lens,” in Noninvasive Assessment of the Visual System, Vol. 3 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 151–154.

Huang, D.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[Crossref] [PubMed]

Izatt, J. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[Crossref] [PubMed]

Jacobson, S. G.

R. W. Knighton, S. G. Jacobson, C. M. Kemp, “The spectral reflectance of the nerve fiber layer of the macaque retina,” Invest. Ophthalmol. Vis. Sci. 30, 2393–2402 (1989).

R. W. Knighton, S. G. Jacobson, M. I. Roman, “Specular reflection from the surface of the retina,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems, S. N. Joffe, N. R. Goldblatt, K. Atsumi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1066, 10–17 (1989).
[Crossref]

Jalkh, A. E.

A. E. Elsner, J. J. Weiter, A. E. Jalkh, “New devices for retinal imaging and functional evaluation,” in Practical Atlas of Retinal Disease and Therapy, W. R. Freeman, ed. (Raven, New York, 1993), pp. 19–35.

Janoff, M.

R. C. Eagle, A. C. Lucier, V. B. Bernadino, M. Janoff, “Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study,” Ophthalmology 87, 1189–1200 (1980).
[PubMed]

Jennings, J. A. M.

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref] [PubMed]

Johnson, C.

H. Shu, D. Howard, C. Johnson, “Development of a noninvasive video-based method of measuring transmission properties of the human lens,” in Noninvasive Assessment of the Visual System, Vol. 3 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 151–154.

Katz, M. L.

G. E. Eldred, M. L. Katz, “Fluorophores of the human retinal pigment epithelium: separation and spectral characterization,” Exp. Eye Res. 47, 71–86 (1988).
[Crossref] [PubMed]

Kemp, C. M.

R. W. Knighton, S. G. Jacobson, C. M. Kemp, “The spectral reflectance of the nerve fiber layer of the macaque retina,” Invest. Ophthalmol. Vis. Sci. 30, 2393–2402 (1989).

Knighton, R. W.

R. W. Knighton, S. G. Jacobson, C. M. Kemp, “The spectral reflectance of the nerve fiber layer of the macaque retina,” Invest. Ophthalmol. Vis. Sci. 30, 2393–2402 (1989).

R. W. Knighton, S. G. Jacobson, M. I. Roman, “Specular reflection from the surface of the retina,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems, S. N. Joffe, N. R. Goldblatt, K. Atsumi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1066, 10–17 (1989).
[Crossref]

Lee, M.

Lin, C. P.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[Crossref] [PubMed]

Lucier, A. C.

R. C. Eagle, A. C. Lucier, V. B. Bernadino, M. Janoff, “Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study,” Ophthalmology 87, 1189–1200 (1980).
[PubMed]

Lutze, M.

Marshall, J.

D. Pauleikhoff, C. A. Harper, J. Marshall, A. C. Bird, “Aging changes in Bruch’s membrane,” Ophthalmology 97, 171–178 (1990).
[PubMed]

Miller, U.

R. Rohler, U. Miller, M. Aberl, “Zur messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
[Crossref]

Noth, J. M.

R. C. Zeimer, J. M. Noth, “A new method of measuring in vivo the lens transmittance, and study of lens scatter, fluorescence and transmittance,” Ophthalmic Res. 16, 246–255 (1984).
[Crossref] [PubMed]

Oosterhuis, J. A.

J. A. van Best, E. W. S. J. Tjin, A. Tsoi, J. P. Boot, J. A. Oosterhuis, “In vivo assessment of lens transmission for blue-green light by autofluorescence measurement,” Ophthalmic Res. 17, 90–95 (1985).
[Crossref] [PubMed]

Pauleikhoff, D.

D. Pauleikhoff, C. A. Harper, J. Marshall, A. C. Bird, “Aging changes in Bruch’s membrane,” Ophthalmology 97, 171–178 (1990).
[PubMed]

Peisch, R. D.

S. Y. Schmidt, R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 27, 1063–1067 (1986).
[PubMed]

Pflibsen, K. P.

Pokorny, J.

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Psychological estimates of optical density in human cones,” Vision Res. 13, 1199–1202 (1973).
[Crossref] [PubMed]

Pokorny, J. J.

J. Xu, J. J. Pokorny, V. C. Smith, “Estimation of lens transmittance from optic disk reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 436, 796 (1995).

Pruett, R. C.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[Crossref] [PubMed]

Puliafito, C. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[Crossref] [PubMed]

Ramponi, P.

M. D. Boulton, F. Dayhaw-Barker, P. Ramponi, R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291–1303 (1990).
[Crossref] [PubMed]

Rohler, R.

R. Rohler, U. Miller, M. Aberl, “Zur messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
[Crossref]

Roman, M. I.

R. W. Knighton, S. G. Jacobson, M. I. Roman, “Specular reflection from the surface of the retina,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems, S. N. Joffe, N. R. Goldblatt, K. Atsumi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1066, 10–17 (1989).
[Crossref]

Said, F. S.

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[Crossref] [PubMed]

Sample, P. A.

P. A. Sample, F. E. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: In vivo assessment of light absorption in 84 eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

Sarks, S. H.

S. H. Sarks, “Ageing and degeneration of the macular region: a clinico-pathological study,” Br. J. Ophthalmol. 60, 324–341 (1976).
[Crossref] [PubMed]

Savage, G. L.

G. L. Savage, G. Hagerstrom-Portnoy, A. J. Adams, S. E. Hewlet, “Age changes in the optical density of human ocular media,” Clin. Vis. Sci. 8, 97–108 (1993).

Schmidt, S. Y.

S. Y. Schmidt, R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 27, 1063–1067 (1986).
[PubMed]

Schuman, J. S.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[Crossref] [PubMed]

Shu, H.

H. Shu, D. Howard, C. Johnson, “Development of a noninvasive video-based method of measuring transmission properties of the human lens,” in Noninvasive Assessment of the Visual System, Vol. 3 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 151–154.

Smith, V. C.

J. Xu, J. J. Pokorny, V. C. Smith, “Estimation of lens transmittance from optic disk reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 436, 796 (1995).

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Psychological estimates of optical density in human cones,” Vision Res. 13, 1199–1202 (1973).
[Crossref] [PubMed]

Snodderly, D. M.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

Staurenghi, G.

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, J. J. Weiter, “In vivomeasurement of lipofuscin in Stargardt’s disease/fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36, 2327–2331 (1995).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivofluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36, 718–729 (1995).
[PubMed]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Swanson, E. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[Crossref] [PubMed]

Thompson, S.

Tiemeijer, L. F.

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[Crossref] [PubMed]

Tjin, E. W. S. J.

J. A. van Best, E. W. S. J. Tjin, A. Tsoi, J. P. Boot, J. A. Oosterhuis, “In vivo assessment of lens transmission for blue-green light by autofluorescence measurement,” Ophthalmic Res. 17, 90–95 (1985).
[Crossref] [PubMed]

Tsoi, A.

J. A. van Best, E. W. S. J. Tjin, A. Tsoi, J. P. Boot, J. A. Oosterhuis, “In vivo assessment of lens transmission for blue-green light by autofluorescence measurement,” Ophthalmic Res. 17, 90–95 (1985).
[Crossref] [PubMed]

van Assendelft, O. W.

O. W. van Assendelft, Spectroscopy of Hemoglobin Derivatives (Thomas, Springfield, Ill., 1970).

van Best, J. A.

J. A. van Best, E. W. S. J. Tjin, A. Tsoi, J. P. Boot, J. A. Oosterhuis, “In vivo assessment of lens transmission for blue-green light by autofluorescence measurement,” Ophthalmic Res. 17, 90–95 (1985).
[Crossref] [PubMed]

van de Kraats, J.

T. T. J. M. Berendschot, J. van de Kraats, D. van Norren, “A new model for spectral fundus reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 4 35, 1803 (1994).

van Norren, D.

T. T. J. M. Berendschot, J. van de Kraats, D. van Norren, “A new model for spectral fundus reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 4 35, 1803 (1994).

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[Crossref] [PubMed]

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

Vos, J. J.

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

J. J. Vos, “On mechanisms of glare,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 1963).

Walraven, P. L.

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[Crossref] [PubMed]

Weale, R. A.

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).
[PubMed]

R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. 186, 175–186 (1966).
[PubMed]

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[Crossref] [PubMed]

Weinreb, R. N.

P. A. Sample, F. E. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: In vivo assessment of light absorption in 84 eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

Weiter, J. J.

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivofluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36, 718–729 (1995).
[PubMed]

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, J. J. Weiter, “In vivomeasurement of lipofuscin in Stargardt’s disease/fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36, 2327–2331 (1995).
[PubMed]

J. J. Weiter, F. C. Delori, G. Wing, K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

G. L. Wing, G. C. Blanchard, J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17, 601–607 (1978).
[PubMed]

A. E. Elsner, J. J. Weiter, A. E. Jalkh, “New devices for retinal imaging and functional evaluation,” in Practical Atlas of Retinal Disease and Therapy, W. R. Freeman, ed. (Raven, New York, 1993), pp. 19–35.

Werner, J. S.

Wing, G.

J. J. Weiter, F. C. Delori, G. Wing, K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Wing, G. L.

G. L. Wing, G. C. Blanchard, J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17, 601–607 (1978).
[PubMed]

Wolter, J. R.

E. A. Boetner, J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. 1, 776–799 (1962).

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Xu, J.

J. Xu, J. J. Pokorny, V. C. Smith, “Estimation of lens transmittance from optic disk reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 436, 796 (1995).

Zeimer, R. C.

R. C. Zeimer, J. M. Noth, “A new method of measuring in vivo the lens transmittance, and study of lens scatter, fluorescence and transmittance,” Ophthalmic Res. 16, 246–255 (1984).
[Crossref] [PubMed]

Acta Ophthalmol. (1)

N. Bulow, “Light scattering by pigment epithelium granules in the human retina,” Acta Ophthalmol. 46, 1048–1053 (1968).

Appl. Opt. (3)

Arch. Ophthalmol. (2)

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

S. H. Sarks, “Ageing and degeneration of the macular region: a clinico-pathological study,” Br. J. Ophthalmol. 60, 324–341 (1976).
[Crossref] [PubMed]

Clin. Vis. Sci. (1)

G. L. Savage, G. Hagerstrom-Portnoy, A. J. Adams, S. E. Hewlet, “Age changes in the optical density of human ocular media,” Clin. Vis. Sci. 8, 97–108 (1993).

Exerpta Med. Int. Congr. Ser. (1)

V.-P. Gabel, R. Birngruber, F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Exerpta Med. Int. Congr. Ser. 14, 658–662 (1978).

Exp. Eye Res. (1)

G. E. Eldred, M. L. Katz, “Fluorophores of the human retinal pigment epithelium: separation and spectral characterization,” Exp. Eye Res. 47, 71–86 (1988).
[Crossref] [PubMed]

Gerontologia (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[Crossref] [PubMed]

Int. Ophthalmol. (1)

J. Gloster, “Fundus reflectometry in the study of the choroidal circulation,” Int. Ophthalmol. 6, 109–118 (1983).
[Crossref] [PubMed]

Invest. Ophthalmol. (1)

E. A. Boetner, J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. 1, 776–799 (1962).

Invest. Ophthalmol. Vis. Sci. (9)

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivofluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36, 718–729 (1995).
[PubMed]

P. A. Sample, F. E. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: In vivo assessment of light absorption in 84 eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

R. W. Knighton, S. G. Jacobson, C. M. Kemp, “The spectral reflectance of the nerve fiber layer of the macaque retina,” Invest. Ophthalmol. Vis. Sci. 30, 2393–2402 (1989).

J. J. Weiter, F. C. Delori, G. Wing, K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

S. Y. Schmidt, R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 27, 1063–1067 (1986).
[PubMed]

G. L. Wing, G. C. Blanchard, J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17, 601–607 (1978).
[PubMed]

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, J. J. Weiter, “In vivomeasurement of lipofuscin in Stargardt’s disease/fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36, 2327–2331 (1995).
[PubMed]

L. Feeney-Burns, E. S. Hilderbrand, S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci. 25, 192–200 (1984).

Invest. Ophthalmol. Vis. Sci. Suppl. 4 (2)

T. T. J. M. Berendschot, J. van de Kraats, D. van Norren, “A new model for spectral fundus reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 4 35, 1803 (1994).

J. Xu, J. J. Pokorny, V. C. Smith, “Estimation of lens transmittance from optic disk reflectance,” Invest. Ophthalmol. Vis. Sci. Suppl. 436, 796 (1995).

J. Opt. Soc. Am. (2)

J. Physiol. (2)

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).
[PubMed]

R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. 186, 175–186 (1966).
[PubMed]

Ophthalmic Res. (2)

R. C. Zeimer, J. M. Noth, “A new method of measuring in vivo the lens transmittance, and study of lens scatter, fluorescence and transmittance,” Ophthalmic Res. 16, 246–255 (1984).
[Crossref] [PubMed]

J. A. van Best, E. W. S. J. Tjin, A. Tsoi, J. P. Boot, J. A. Oosterhuis, “In vivo assessment of lens transmission for blue-green light by autofluorescence measurement,” Ophthalmic Res. 17, 90–95 (1985).
[Crossref] [PubMed]

Ophthalmology (2)

R. C. Eagle, A. C. Lucier, V. B. Bernadino, M. Janoff, “Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study,” Ophthalmology 87, 1189–1200 (1980).
[PubMed]

D. Pauleikhoff, C. A. Harper, J. Marshall, A. C. Bird, “Aging changes in Bruch’s membrane,” Ophthalmology 97, 171–178 (1990).
[PubMed]

Vision Res. (9)

M. D. Boulton, F. Dayhaw-Barker, P. Ramponi, R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291–1303 (1990).
[Crossref] [PubMed]

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

S. Coren, J. S. Girgus, “Density of human lens pigmentation: in vivomeasures over an extended age range,” Vision Res. 12, 343–346 (1972).
[Crossref] [PubMed]

R. Rohler, U. Miller, M. Aberl, “Zur messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
[Crossref]

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref] [PubMed]

J.-M. Gorrand, R. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[Crossref] [PubMed]

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Psychological estimates of optical density in human cones,” Vision Res. 13, 1199–1202 (1973).
[Crossref] [PubMed]

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[Crossref] [PubMed]

Other (10)

The quantity δDDis the logarithm of the ratio of the reflectance in eyes with dense drusen to that in eyes without visible drusen. The spectral variation of δDDshould not be confused with the reflectance spectrum of drusen.

All spectral data compiled from the literature for use in this study were interpolated to every nanometer by cubic spline techniques. Curve fitting was also used over restricted spectral ranges.

J. J. Vos, “On mechanisms of glare,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 1963).

O. W. van Assendelft, Spectroscopy of Hemoglobin Derivatives (Thomas, Springfield, Ill., 1970).

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Despite the fact that we measure optical media density, in this paper we will use principally the terminology “(crystalline) lens” rather than “ocular media.” The reasons are brevity and the fact that light loss in the media is caused principally by lens absorption.2

H. Shu, D. Howard, C. Johnson, “Development of a noninvasive video-based method of measuring transmission properties of the human lens,” in Noninvasive Assessment of the Visual System, Vol. 3 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 151–154.

A. E. Elsner, J. J. Weiter, A. E. Jalkh, “New devices for retinal imaging and functional evaluation,” in Practical Atlas of Retinal Disease and Therapy, W. R. Freeman, ed. (Raven, New York, 1993), pp. 19–35.

R. W. Knighton, S. G. Jacobson, M. I. Roman, “Specular reflection from the surface of the retina,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems, S. N. Joffe, N. R. Goldblatt, K. Atsumi, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1066, 10–17 (1989).
[Crossref]

Lens-corrected lipofuscin in the five Stargardt’s patients42 is equal, on average, to those of 42 ± 12-years older normals (range 30–60 years). The lens aging rate for the entire population is ≈0.0058 D.U./yr. Assuming that the observed tendency for increased lens estimate in Stargardt’s (≈0.03 D.U; Fig. 8) is due solely to higher lipofuscin absorption, then the lens aging rate in absence of this effect would be ≈0.0058 − (0.03/42) or ≈0.0051 D.U./yr. Lipofuscin absorption would then cause on overestimation of ≈14% in lens density (worst-case analysis).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Fundus reflectance at 7° temporal to the fovea as a function of wavelength and age. Left, reflectance spectra for different ages (as shown). The lighter, interrupted line is the spectrum of one patient with an IOL (age 76 years). Right, fundus reflectance as a function of age for λ = 450 and λ = 660 nm. Filled/shaded circles, dark/light iris pigmentation. Open squares, data of four patients with IOL’s. The spectral ranges indicated at the top of the left graph represent the ranges where fundus reflectance correlates significantly either with age (p < 0.0001) or with iris color (p < 0.0001).

Fig. 2
Fig. 2

Linear correlation coefficients of log Rλ with age (filled circles) and of the slope Δ log Rλ/Δλ with age (open circles) for a group of 144 normal subjects and patients with AMD.

Fig. 3
Fig. 3

Extinction spectra for the crystalline lens,6 oxygenated hemoglobin (HbO2),35 and the macular pigment (MP).37 The reflectometric method uses the wavelengths 485 and 520 nm (dashed lines, squares), at which the absorption by HbO2 is equal. The psychophysical method uses the wavelengths 437 and 488 nm (dotted lines, squares), at which the absorption by MP is equal.

Fig. 4
Fig. 4

Age variation of the lens density estimate ΔDR,510 obtained by the reflectometric method (left scale) and variation of log(R520/R485) (right scale). The two scales are related by the linear transformation of Eq. (7). Symbols: filled circles, subjects with normal eyes; filled squares, patients with aging changes or AMD; open squares, patients with IOL’s. The smooth curve is the quadratic regression through the log(R520/R485) data, excluding IOL eyes (n = 144, r2 = 0.87, p < 0.0001).

Fig. 5
Fig. 5

Age variation of the lens density DP,510 obtained with the psychophysical method. The symbols are the same as in Fig. 4. The smooth curve is the quadratic regression through the data, excluding IOL eyes (n = 112, r2 = 0.73, p < 0.0001).

Fig. 6
Fig. 6

Comparison of lens density estimates for the reflectance and psychophysical methods. The symbols are the same as in Fig. 4. Top, density difference ΔDR,510 obtained from reflectometry versus the difference ΔDP,510 from psychophysics; interrupted line, theoretical line of equality. Bottom, difference of reflectometry estimates and psychophysical estimates as a function of age; the thick line is the fitted linear regression (r2 = 0.0002, p = 0.86), and the finer lines are the 95% confidence interval for the slope.

Fig. 7
Fig. 7

Influence of drusen and iris color on the reflectance of the fundus, derived from multiple regression analyses of Eq. (12). Spectral variation of δDD, δMD, δDI, and the age term β (slope of log R versus age; see Fig. 1, right). Thick curves indicate the data for the older subjects (ages 50–87 years) and thin curves those for the young subjects (ages 15–49 years). The statistical significance for each regression coefficient is indicated by a symbol: filled circles, p < 0.0001; shaded circles, 0.005 > p > 0.0001; open circles, 0.05 > p > 0.005; a vertical bar indicates a trend (0.15 > p > 0.05). The thick shaded curve represents the results for all drusen (DD, MD) together.

Fig. 8
Fig. 8

Lens density estimates in patients with advanced pathology at the temporal site of measurement (filled symbols) compared with those in the study (open circles; same data as in Fig. 4; no IOL patients). Filled squares, four AMD patients with exudative changes at 7° temporal to the fovea (pigment epithelium detachments and new vessels); filled triangles, three patients with pronounced atrophy at the test site (two AMD patients and one younger patient with retinal degeneration); filled circles, five patients with Stargardt’s disease. The Stargardt’s patients had lipofuscin levels two to four times those of normal subjects of the same age.

Fig. 9
Fig. 9

Variation with age of the lens-corrected reflectances at 485 and 520 nm (filled and shaded symbols, respectively) calculated with Eq. (13). Thick lines, linear regression lines through lens corrected reflectances at 485 and 520 nm. Thin lines, linear regression lines through the uncorrected reflectances at 485 and 520 nm (data not shown to avoid confusion; see Fig. 1, right). The distance between the two parallel regression lines is log ( R c , 520 / R c , 485 ) = log ( R 520 / R 485 ) ¯ = 0.177, a direct consequence of our assumptions [see Eqs. (4) and (5)]. Inset: Slope γλ of the regression (log units/year) as a function of wavelength for A, the uncorrected and B, the lens-corrected data.

Tables (3)

Tables Icon

Table 1 Study Population

Tables Icon

Table 2 Relative Extinction Coefficients of the Crystalline Lens

Tables Icon

Table 3 Multiple Regression Analysis of Lens Density (Reflectance Method)

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

R λ = K opt n 2 f e 2 ( OMA λ - OMA λ , bas ) ( 1 / π ) G Q re , λ S λ ,
D λ = K λ K λ 1 - K λ 2 ( D λ 1 - D λ 2 ) .
log R λ = log R λ * - 2 D λ ,
D 485 - D 520 = 1 2 [ log R 520 R 485 - log R 520 * R 485 * ] .
( D 485 - D 520 ) ¯ = 1 2 [ log R 520 R 485 ¯ - log R 520 * R 485 * ] ,
( D 485 - D 520 ) - ( D 485 - D 520 ) ¯ = 1 2 [ log R 520 R 485 - log R 520 R 485 ¯ ] .
Δ D R , λ = D R , λ - D R , λ ¯ = 0.5 K L 1 , λ K L1 , 485 - K L1 , 520 [ log R 520 R 485 - log R 520 R 485 ¯ ] .
( D P , 437 - D P , 488 ) = log E 437 E 488 + log V 437 * V 488 * ,
D P , λ = K L 1 , λ K L 1 , 437 - K L 1 , 488 [ log E 437 E 488 + log V 437 * V 488 * - D L 2 , 437 ] .
Δ D P , λ = D P , λ - D P , λ ¯ = K L 1 , λ K L 1 , 437 - K L 1 , 488 [ log E 437 E 488 - log E 437 E 488 ¯ ] ,
Δ D R , 510 = α + β × age + δ DI 1 / 0 + δ MD 1 / 0 + δ DD 1 / 0 ,
log R λ = α λ + β λ × age + δ DI , λ 1 / 0 + δ MD , λ 1 / 0 + δ DD , λ 1 / 0 .
log R c , λ = log R λ + 2 ( Δ D R , 510 ) K L 1 , λ K L 1 , 510 ,
D 510 = 1.473 [ ( D 485 - D 520 ) + 0.004 ] ,             r 2 = 0.999 ,
D 510 = 0.652 [ ( D 437 - D 488 ) - 0.073 ] ,             r 2 = 0.998.
K 437 - K 488 K 485 - K 520 = 2 log ( E 437 / E 488 ) - log ( E 437 / E 488 ) ¯ log ( R 520 / R 485 ) - log ( R 520 / R 485 ) ¯ .

Metrics