Abstract

Coherence encoding methods are used to transmit full complex images down a pair of optical fibers (multimode or single mode). An implementation using acousto-optic deflectors is analyzed. Experimental results are given.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56, 1463–1472 (1966).
    [Crossref]
  2. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit. II,” J. Opt. Soc. Am. 57, 932–941 (1967).
    [Crossref]
  3. A. W. Lohmann, D. P. Paris, “Super-resolution for nonbirefringent objects,” Appl. Opt. 3, 1037–1043 (1964).
    [Crossref]
  4. M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
    [Crossref]
  5. W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am. A 1, 241–250 (1984).
    [Crossref]
  6. E. N. Leith, “Small-aperture, high-resolution, two-channel imaging system,” Opt. Lett. 15, 885–887 (1990).
    [Crossref] [PubMed]
  7. P. C. Sun, E. N. Leith, “Superresolution by spatial-temporal encoding methods,” Appl. Opt. 31, 4857–4862 (1992).
    [Crossref] [PubMed]
  8. A. Gover, C. P. Lee, A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” J. Opt. Soc. Am. 66, 306–311 (1976).
    [Crossref]
  9. A. M. Tai, “Two-dimensional image transmission through a single optical fiber by wavelength-time multiplexing,” Appl. Opt. 22, 3826–3832 (1983).
    [Crossref] [PubMed]
  10. L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).
  11. U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
    [Crossref]
  12. G. J. Dunning, R. C. Lind, “Demonstration of image transmission through fibers by optical phase conjugation,” Opt. Lett. 7, 558–560 (1982).
    [Crossref] [PubMed]
  13. S. Fukushima, T. Kurokawa, “Parallel interconnection through an optical fiber using phase conjugation mirror acceptable for optical data pattern,” IEEE J. Quantum Electron. 29, 613–618 (1993).
    [Crossref]
  14. P. Naulleau, M. Brown, C. Chen, E. Leith, “Direct three-dimensional image transmission through single-mode fibers with monochromatic light,” Opt. Lett. 21, 36–38 (1996).
    [Crossref] [PubMed]
  15. P. Naulleau, C. Chen, E. Leith, “Analysis of direct three-dimensional image transmission through optical fibers by the use of coherence methods,” Appl. Opt. 35, 3953–3962 (1996).
    [Crossref] [PubMed]
  16. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 318–404.
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 141–197.

1996 (2)

1993 (1)

S. Fukushima, T. Kurokawa, “Parallel interconnection through an optical fiber using phase conjugation mirror acceptable for optical data pattern,” IEEE J. Quantum Electron. 29, 613–618 (1993).
[Crossref]

1992 (1)

1990 (2)

E. N. Leith, “Small-aperture, high-resolution, two-channel imaging system,” Opt. Lett. 15, 885–887 (1990).
[Crossref] [PubMed]

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

1984 (1)

1983 (1)

1982 (1)

1979 (1)

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[Crossref]

1976 (1)

1973 (1)

M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[Crossref]

1967 (1)

1966 (1)

1964 (1)

Akopov, L. I.

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Brown, M.

Cathey, W. T.

Chen, C.

Dianov, E. M.

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Dunning, G. J.

Frieden, B. R.

Friesem, A. A.

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[Crossref]

Fukushima, S.

S. Fukushima, T. Kurokawa, “Parallel interconnection through an optical fiber using phase conjugation mirror acceptable for optical data pattern,” IEEE J. Quantum Electron. 29, 613–618 (1993).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 141–197.

Gover, A.

Kondo, M.

M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[Crossref]

Kurokawa, T.

S. Fukushima, T. Kurokawa, “Parallel interconnection through an optical fiber using phase conjugation mirror acceptable for optical data pattern,” IEEE J. Quantum Electron. 29, 613–618 (1993).
[Crossref]

Kuznetsov, A. A.

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Lee, C. P.

Leith, E.

Leith, E. N.

Levy, U.

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[Crossref]

Lind, R. C.

Lohmann, A. W.

Lukosz, W.

Naulleau, P.

Nefedov, S. M.

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Paris, D. P.

Rhodes, W. T.

Rushforth, C. K.

Sato, T.

M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[Crossref]

Sun, P. C.

Tai, A. M.

Ueda, M.

M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[Crossref]

Voevodkin, G. G.

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Yariv, A.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 318–404.

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

S. Fukushima, T. Kurokawa, “Parallel interconnection through an optical fiber using phase conjugation mirror acceptable for optical data pattern,” IEEE J. Quantum Electron. 29, 613–618 (1993).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Opt. Acta (1)

M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[Crossref]

Opt. Commun. (1)

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[Crossref]

Opt. Lett. (3)

Sov. J. Opt. Technol. (1)

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Other (2)

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 318–404.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 141–197.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

System for transmitting 3-D images through a single-mode fiber: P’s, planes; L’s lenses.

Fig. 2
Fig. 2

Spatially incoherent source generation an A-O deflector. The drive signal is a chirp of bandwidth W and center frequency f0. The input illumination is a plane wave temporal frequency ν = ν0. The output consists of a set of plane waves with a spatial bandwidth proportional to the A-O drive bandwidth (W). Furthermore, all the plane-wave elements are mutually incoherent because, having been generated by different temporal frequency components of the A-O drive signal, they have incurred different Doppler shifts.

Fig. 3
Fig. 3

Experimental setup for coherence imaging through optical fibers: AOD’s, A-O deflectors.

Fig. 4
Fig. 4

(a) Transmitted image with the reference beam blocked and the A-O deflectors disabled. (b), (c) Images transmitted by coherence imaging with the plane containing (b) the outside wires in focus and (c) the middle wire in focus.

Fig. 5
Fig. 5

Two-lateral-dimension image transmitted through fiber by coherence imaging along the x dimension and scanning along the y dimension.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S ( t , f 0 ) = - exp [ j 2 π ( ν 0 + ν s ) t ] 1 2 n V s F ( ν s ) d ν s ,
U r ( t , f 0 ) = [ S ( t , f 0 ) H ( f 0 , d 1 ) * A ( f 0 ) ] H ( f 0 , d 2 ) ,
U i ( t , f 0 ) = { [ S ( t , - f 0 ) H ( f 0 , d 1 ) * A ( - f 0 ) ] × H ( f 0 , d 2 ) H 1 ( f 0 ) } * H f ( f 0 ) ,
U i ( t , f 0 ) = H ( f 0 , d 2 ) H 1 ( f 0 ) - A ( - α ) × S ( t , - f 0 + α ) H ( f 0 - α , d 1 ) d α .
U r ( t , f 0 ) = S ( t , f 0 ) H ( f 0 , d 3 ) .
U ( f 0 ) = - A ( - α ) S ( t , α - γ ) H ( γ - α , d 1 ) × H ( γ , d 2 ) H 1 ( γ ) S * ( t , f 0 - γ ) × H * ( f 0 - γ , d 3 ) d α d γ .
U ( f 0 ) = - A ( - f 0 ) S ( f 0 - γ ) 2 H ( γ - f 0 , d 1 ) × H ( γ , d 2 ) H 1 ( γ ) H * ( f 0 - γ , d 3 ) d γ .
U ( f 0 ) = - A ( f 0 ) S ( f 0 - γ ) 2 H * ( f 0 - γ , d 2 ) × H ( γ , d 2 ) H 1 ( γ ) d γ ,
U ( f 0 ) = - A ( f 0 ) H * ( f 0 - γ , d 2 ) H ( γ , d 2 ) δ ( γ ) d γ = A ( f 0 ) H * ( f 0 , d 2 ) ,
u ( x ) = - a ( γ ) h * ( x - γ , d 2 ) d γ ,
U ( f 0 ) = A ( f 0 ) [ S ( f 0 ) H * ( f 0 , d 2 ) * H 1 ( f 0 ) H ( f 0 , d 2 ) ] ,

Metrics