Abstract

Color constancy is the perceived stability of the color of objects despite changes in the light illuminating them. An object’s color is considered constant if the current perceived color is judged to be in accord with the remembered one. Thus the accuracy and precision of color memory are fundamental to understanding this classic problem. Two hypotheses of color memory are tested here: (1) the photoreceptor hypothesis, which states that the color recalled from memory reproduces the light absorbed by each type of cone and (2) the surface-reflectance hypothesis, which states that the color recalled from memory is based on an inferred spectral reflectance of a surface that does not depend on the spectral distribution of the illuminant. In the experiments a test color is surrounded by either (i) a complex pattern composed of several colored patches or (ii) a uniform “gray” field at the chromaticity of the illuminant. In a control condition the test color is presented on a dark background. Long-term memory of the test color is measured in a production task begun 10 min after the end of the learning phase. In general, the results with a complex surround are consistent with the surface-reflectance hypothesis but not with the photoreceptor hypothesis. Color memory with the “gray” surround, on the other hand, shows a much stronger effect of the illuminant used during learning. These results are consistent with computational models of color constancy that require three or more chromaticities in view.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. von Helmholtz, Treatise on Physiological Optics, 2nd ed. (Dover, New York, 1962; original printing, 1866).
  2. E. Hering, Outline of a Theory of the Light Sense (Harvard U. Press, Cambridge, Mass., 1920).
  3. J. Pokorny, S. K. Shevell, V. C. Smith, “Colour appearance and colour constancy,” in The Perception of Colour, P. Gouras, ed. (Macmillan, London, 1991), pp. 43–61.
  4. J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
    [CrossRef]
  5. L. E. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [CrossRef] [PubMed]
  6. A. Valberg, B. Lange-Malecki, “Color constancy in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
    [CrossRef]
  7. L. E. Arend, A. Reeves, J. Schirillo, R. Goldstein, “Simultaneous color constancy: papers with diverse Munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991).
    [CrossRef] [PubMed]
  8. R. W. Burnham, J. R. Clark, “A test of hue memory,” J. Appl. Psychol. 39, 164–172 (1955).
    [CrossRef]
  9. S. M. Newhall, R. W. Burnham, J. R. Clark, “Comparison of successive with simultaneous color matching,” J. Opt. Soc. Am. 47, 43–56 (1957).
    [CrossRef]
  10. C. J. Bartleson, “Memory colors of familiar objects,” J. Opt. Soc. Am. 50, 73–77 (1960).
    [CrossRef] [PubMed]
  11. P. Siple, R. M. Springer, “Memory and preference for the colors of objects,” Percept. Psychophys. 34, 363–370 (1983).
    [CrossRef] [PubMed]
  12. E. R. Heider, “Universals in color naming and memory,” J. Exp. Psychol. 93, 10–20 (1972).
    [CrossRef] [PubMed]
  13. C. Ratner, J. McCarthy, “Ecologically relevant stimuli and color memory,” J. Gen. Psychol. 117, 369–377 (1990).
    [CrossRef] [PubMed]
  14. K. Bäuml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
    [CrossRef]
  15. D. H. Brainard, B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
    [CrossRef] [PubMed]
  16. J. Walraven, T. L. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–377.
    [CrossRef]
  17. F. W. Cornelissen, E. Brenner, “Simultaneous color constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
    [PubMed]
  18. J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–805 (1995).
    [CrossRef] [PubMed]
  19. K. L. Kelly, K. S. Gibson, D. Nickerson, “Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements,” J. Opt. Soc. Am. 33, 355–376 (1943).
    [CrossRef]
  20. D. Nickerson, Spectrophotometric Data for a Collection of Munsell Samples (U.S. Department of Agriculture, Washington, D.C., 1957).
  21. We thank David Brainard of the University of California at Santa Barbara for providing the reflectances in machine-readable form.
  22. Y. Le Grand, Light, Colour and Vision. 2nd ed. (Chapman & Hall, London, 1968).
  23. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  24. L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectances,” J. Opt. Soc. Am. A 3, 29–33 (1986).
    [CrossRef] [PubMed]
  25. D. A. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 5, 5–36 (1990).
    [CrossRef]
  26. M. D’Zmura, G. Iverson, “Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 11, 2389–2400 (1994).
    [CrossRef]
  27. L. W. Barsalou, “Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories,” J. Exp. Psychol. Learning, Memory, Cognition 11, 629–649 (1985).
    [CrossRef]

1995 (3)

F. W. Cornelissen, E. Brenner, “Simultaneous color constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
[PubMed]

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–805 (1995).
[CrossRef] [PubMed]

K. Bäuml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
[CrossRef]

1994 (1)

1992 (1)

1991 (1)

1990 (3)

D. A. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 5, 5–36 (1990).
[CrossRef]

A. Valberg, B. Lange-Malecki, “Color constancy in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

C. Ratner, J. McCarthy, “Ecologically relevant stimuli and color memory,” J. Gen. Psychol. 117, 369–377 (1990).
[CrossRef] [PubMed]

1986 (2)

1985 (1)

L. W. Barsalou, “Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories,” J. Exp. Psychol. Learning, Memory, Cognition 11, 629–649 (1985).
[CrossRef]

1983 (1)

P. Siple, R. M. Springer, “Memory and preference for the colors of objects,” Percept. Psychophys. 34, 363–370 (1983).
[CrossRef] [PubMed]

1979 (1)

1976 (1)

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

1972 (1)

E. R. Heider, “Universals in color naming and memory,” J. Exp. Psychol. 93, 10–20 (1972).
[CrossRef] [PubMed]

1960 (1)

1957 (1)

1955 (1)

R. W. Burnham, J. R. Clark, “A test of hue memory,” J. Appl. Psychol. 39, 164–172 (1955).
[CrossRef]

1943 (1)

Arend, L. E.

Barsalou, L. W.

L. W. Barsalou, “Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories,” J. Exp. Psychol. Learning, Memory, Cognition 11, 629–649 (1985).
[CrossRef]

Bartleson, C. J.

Bäuml, K.

Benzschawel, T. L.

J. Walraven, T. L. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–377.
[CrossRef]

Boynton, R. M.

Brainard, D. H.

Brenner, E.

F. W. Cornelissen, E. Brenner, “Simultaneous color constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
[PubMed]

Burnham, R. W.

Clark, J. R.

Cornelissen, F. W.

F. W. Cornelissen, E. Brenner, “Simultaneous color constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
[PubMed]

D’Zmura, M.

Forsyth, D. A.

D. A. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 5, 5–36 (1990).
[CrossRef]

Gibson, K. S.

Goldstein, R.

Heider, E. R.

E. R. Heider, “Universals in color naming and memory,” J. Exp. Psychol. 93, 10–20 (1972).
[CrossRef] [PubMed]

Hering, E.

E. Hering, Outline of a Theory of the Light Sense (Harvard U. Press, Cambridge, Mass., 1920).

Iverson, G.

Jenness, J. W.

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–805 (1995).
[CrossRef] [PubMed]

Kelly, K. L.

Lange-Malecki, B.

A. Valberg, B. Lange-Malecki, “Color constancy in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

Le Grand, Y.

Y. Le Grand, Light, Colour and Vision. 2nd ed. (Chapman & Hall, London, 1968).

Lucassen, M. P.

J. Walraven, T. L. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–377.
[CrossRef]

MacLeod, D. I. A.

Maloney, L. T.

McCann, J. J.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

McCarthy, J.

C. Ratner, J. McCarthy, “Ecologically relevant stimuli and color memory,” J. Gen. Psychol. 117, 369–377 (1990).
[CrossRef] [PubMed]

McKee, S. P.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Newhall, S. M.

Nickerson, D.

K. L. Kelly, K. S. Gibson, D. Nickerson, “Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements,” J. Opt. Soc. Am. 33, 355–376 (1943).
[CrossRef]

D. Nickerson, Spectrophotometric Data for a Collection of Munsell Samples (U.S. Department of Agriculture, Washington, D.C., 1957).

Pokorny, J.

J. Pokorny, S. K. Shevell, V. C. Smith, “Colour appearance and colour constancy,” in The Perception of Colour, P. Gouras, ed. (Macmillan, London, 1991), pp. 43–61.

Ratner, C.

C. Ratner, J. McCarthy, “Ecologically relevant stimuli and color memory,” J. Gen. Psychol. 117, 369–377 (1990).
[CrossRef] [PubMed]

Reeves, A.

Rogowitz, B. E.

J. Walraven, T. L. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–377.
[CrossRef]

Schirillo, J.

Shevell, S. K.

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–805 (1995).
[CrossRef] [PubMed]

J. Pokorny, S. K. Shevell, V. C. Smith, “Colour appearance and colour constancy,” in The Perception of Colour, P. Gouras, ed. (Macmillan, London, 1991), pp. 43–61.

Siple, P.

P. Siple, R. M. Springer, “Memory and preference for the colors of objects,” Percept. Psychophys. 34, 363–370 (1983).
[CrossRef] [PubMed]

Smith, V. C.

J. Pokorny, S. K. Shevell, V. C. Smith, “Colour appearance and colour constancy,” in The Perception of Colour, P. Gouras, ed. (Macmillan, London, 1991), pp. 43–61.

Springer, R. M.

P. Siple, R. M. Springer, “Memory and preference for the colors of objects,” Percept. Psychophys. 34, 363–370 (1983).
[CrossRef] [PubMed]

Taylor, T. H.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Valberg, A.

A. Valberg, B. Lange-Malecki, “Color constancy in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

von Helmholtz, H.

H. von Helmholtz, Treatise on Physiological Optics, 2nd ed. (Dover, New York, 1962; original printing, 1866).

Walraven, J.

J. Walraven, T. L. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–377.
[CrossRef]

Wandell, B. A.

Int. J. Comput. Vision (1)

D. A. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 5, 5–36 (1990).
[CrossRef]

J. Appl. Psychol. (1)

R. W. Burnham, J. R. Clark, “A test of hue memory,” J. Appl. Psychol. 39, 164–172 (1955).
[CrossRef]

J. Exp. Psychol. (1)

E. R. Heider, “Universals in color naming and memory,” J. Exp. Psychol. 93, 10–20 (1972).
[CrossRef] [PubMed]

J. Exp. Psychol. Learning, Memory, Cognition (1)

L. W. Barsalou, “Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories,” J. Exp. Psychol. Learning, Memory, Cognition 11, 629–649 (1985).
[CrossRef]

J. Gen. Psychol. (1)

C. Ratner, J. McCarthy, “Ecologically relevant stimuli and color memory,” J. Gen. Psychol. 117, 369–377 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (6)

Percept. Psychophys. (1)

P. Siple, R. M. Springer, “Memory and preference for the colors of objects,” Percept. Psychophys. 34, 363–370 (1983).
[CrossRef] [PubMed]

Vision Res. (4)

A. Valberg, B. Lange-Malecki, “Color constancy in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

F. W. Cornelissen, E. Brenner, “Simultaneous color constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
[PubMed]

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–805 (1995).
[CrossRef] [PubMed]

Other (7)

J. Walraven, T. L. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–377.
[CrossRef]

H. von Helmholtz, Treatise on Physiological Optics, 2nd ed. (Dover, New York, 1962; original printing, 1866).

E. Hering, Outline of a Theory of the Light Sense (Harvard U. Press, Cambridge, Mass., 1920).

J. Pokorny, S. K. Shevell, V. C. Smith, “Colour appearance and colour constancy,” in The Perception of Colour, P. Gouras, ed. (Macmillan, London, 1991), pp. 43–61.

D. Nickerson, Spectrophotometric Data for a Collection of Munsell Samples (U.S. Department of Agriculture, Washington, D.C., 1957).

We thank David Brainard of the University of California at Santa Barbara for providing the reflectances in machine-readable form.

Y. Le Grand, Light, Colour and Vision. 2nd ed. (Chapman & Hall, London, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Test pattern used in the complex-background condition. The test color is presented in the central circle. (b) CIE chromaticity coordinates of the six test stimuli. They are the combinations of three Munsell chips (“red” 5R 4/6, “green” 10GY 4/6, and “blue” 5B 4/6) simulated under two CIE standard illuminants (A or C). Test colors under illuminant A (C) are indicated by open (filled) circles (rA or rC, “red” paper under illuminant A or C; bA or bC, “blue” paper under illuminant A or C; gA or gC, “green” paper under illuminant A or C; EE, equal-energy white). Points labeled R, G, and B are the chromaticity coordinates of the CRT’s three phosphors.

Fig. 2
Fig. 2

Theoretical predictions of the photoreceptor hypothesis and the surface-reflectance hypothesis for (a) the test-alone condition and (b and c) the complex- (or “gray”-) background condition. The example considers the “red” test color on the L/M dimension. Filled circles represent the stimuli presented during the training phase; open squares represent the colors produced during the test phase. The illuminant during training is on the horizontal axis; the vertical axis shows the cone-excitation value. The solid (dashed) line in (b) and in (c) shows theoretical results under test illuminant A (C).

Fig. 3
Fig. 3

Typical set of raw measurements with the complex background (training illuminant C, “red” test color) on the L/M dimension. The X’s (labeled rA, rC, and EE) represent reference colors. The dashed horizontal line indicates the specific training color used in this session. The open (filled) triangles show the measurements under test illuminant A (C). The open squares represent the mean ± standard error of the mean of the 12 measurements under each test illuminant.

Fig. 4
Fig. 4

Measurements of the recalled “red” test color in the test-alone (left-hand column), “gray” (middle column), and complex (right-hand column) background conditions. The horizontal axis indicates the illuminant during training. Symbols are as in Fig. 2. Error bars represent standard errors of the mean for four subjects. The vertical axis represents the cone-excitation measurement. The upper (lower) row of panels shows measurements on the L/M (S) dimension.

Fig. 5
Fig. 5

As Fig. 4 but for the “blue” test color.

Fig. 6
Fig. 6

As Fig. 4 but for the “green” test color.

Fig. 7
Fig. 7

Analysis of variance results from the long- (10-min) delay experiment.

Fig. 8
Fig. 8

Measurements of recalled test colors after a short (10-s) delay (thick solid and dashed lines). Results with the longer 10-min delay are replotted from Figs. 46 for reference (thin solid and dashed lines). Results with the “red”, “blue”, and “green” test colors are in the two top, middle and bottom rows, respectively. Symbols and axes are as in Fig. 4.

Fig. 9
Fig. 9

Shifts in color memory in (a) the test-alone condition and (b) the complex-background condition. Each training color (filled circles) and its average recalled color (open circles) are connected by an arrow. Also plotted in (b) are results from the first of the 24 test trials in a session (open triangles). Axes and other symbols as in Fig. 1(b).

Metrics