Abstract

We have simultaneously measured detection and temporal frequency identification for both red–green isoluminant and achromatic stimuli over a range of temporal frequencies for two observers. Results show that temporal frequency identification can be made along the temporal frequency dimension for both red–green and achromatic stimuli at contrasts close to detection threshold. In general, temporal frequency identification was better for the achromatic than for the red–green stimuli; however, the level of chromatic identification performance was still sufficient to permit us to reject the notion that the red–green mechanism embodies a single temporal filter. We have developed a model based on signal detection theory that assumes that detection and identification both depend on the properties of the temporal filters underlying each mechanism. From this we have derived putative underlying shapes and sensitivities for the temporal filters of the red–green and achromatic mechanisms that comprise a low-pass and a bandpass filter for red–green color vision and two bandpass filters for luminance vision. Finally, we suggest that the relative perceived slowing of isoluminant stimuli may be accounted for by a common motion analysis subserved by different front-end temporal filters for red–green and achromatic motion signals.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription