Abstract

We have simultaneously measured detection and temporal frequency identification for both red–green isoluminant and achromatic stimuli over a range of temporal frequencies for two observers. Results show that temporal frequency identification can be made along the temporal frequency dimension for both red–green and achromatic stimuli at contrasts close to detection threshold. In general, temporal frequency identification was better for the achromatic than for the red–green stimuli; however, the level of chromatic identification performance was still sufficient to permit us to reject the notion that the red–green mechanism embodies a single temporal filter. We have developed a model based on signal detection theory that assumes that detection and identification both depend on the properties of the temporal filters underlying each mechanism. From this we have derived putative underlying shapes and sensitivities for the temporal filters of the red–green and achromatic mechanisms that comprise a low-pass and a bandpass filter for red–green color vision and two bandpass filters for luminance vision. Finally, we suggest that the relative perceived slowing of isoluminant stimuli may be accounted for by a common motion analysis subserved by different front-end temporal filters for red–green and achromatic motion signals.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
    [CrossRef] [PubMed]
  2. K. Uchikawa, M. Ikeda, “Temporal integration of chromatic double pulses for detection of equal-luminance wavelength changes,” J. Opt. Soc. Am. A 3, 2109–2115 (1986).
    [CrossRef] [PubMed]
  3. K. Uchikawa, T. Yoshizawa, “Temporal responses to chromatic and achromatic change inferred from temporal double-pulse integration,” J. Opt. Soc. Am. A 10, 1697–1705 (1993).
    [CrossRef]
  4. D. C. Burr, M. C. Morrone, “Impulse-response functions for chromatic and achromatic stimuli,” J. Opt. Soc. Am. A 10, 1706–1713 (1993).
    [CrossRef]
  5. R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3139–3144 (1994).
    [CrossRef] [PubMed]
  6. P. E. King-Smith, J. J. Kulikowski, “Pattern and flicker detection analyzed by subthreshold summation,” J. Physiol. (London) 249, 519–548 (1975).
  7. A. B. Watson, J. G. Robson, “Discrimination at threshold: Labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
    [CrossRef] [PubMed]
  8. P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
    [CrossRef] [PubMed]
  9. M. B. Mandler, “Temporal frequency discrimination above threshold,” Vision Res. 24, 1873–1880 (1984).
    [CrossRef] [PubMed]
  10. M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
    [CrossRef] [PubMed]
  11. S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
    [CrossRef] [PubMed]
  12. R. F. Hess, G. T. Plant, “Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493–1500 (1985).
    [CrossRef] [PubMed]
  13. R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
    [CrossRef] [PubMed]
  14. S. J. Waugh, R. F. Hess, “Suprathreshold temporal-frequency discrimination in the fovea and the periphery,” J. Opt. Soc. Am. A 11, 1199–1212 (1994).
    [CrossRef]
  15. S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
    [CrossRef] [PubMed]
  16. M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
    [CrossRef] [PubMed]
  17. L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
    [CrossRef] [PubMed]
  18. A. T. Smith, “Velocity perception and discrimination: relation to temporal mechanisms,” Vision Res. 27, 1491–1500 (1987).
    [CrossRef] [PubMed]
  19. A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
    [CrossRef] [PubMed]
  20. W. Richards, “Quantifying sensory channels: generalizing colorimetry to orientation and texture, touch and tones,” Sensory Process. 3, 207–229 (1979).
  21. P. Cavanagh, “Vision at equiluminance,” in Vision and Visual Dysfunction: Limits of Vision, J. J. Kulikowski, V. Walsh, I. J. Murray, eds. (Macmillan, London, 1991), Vol. 5, pp. 234–250.
  22. S. J. Cropper, “Velocity discrimination in chromatic gratings and beats,” Vision Res. 34, 41–48 (1994).
    [CrossRef] [PubMed]
  23. A. B. Metha, “Detection and direction discrimination in terms of post-receptoral mechanisms,” Ph.D. dissertation (University of Melbourne, Melbourne, Australia, 1994).
  24. A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Computers 25, 371–383 (1993).
    [CrossRef]
  25. P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
    [CrossRef] [PubMed]
  26. C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).
  27. P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
    [CrossRef] [PubMed]
  28. H. L. DeVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1948).
  29. D. Regan, C. W. Tyler, “Some dynamic features of color vision,” Vision Res. 11, 1307–1324 (1971).
    [CrossRef] [PubMed]
  30. G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–50 (1993).
    [CrossRef] [PubMed]
  31. J. G. Robson, “Spatial and temporal contrast sensitivity functions of the visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
    [CrossRef]
  32. D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,” J. Opt. Soc. Am. 73, 742–750 (1983).
    [CrossRef] [PubMed]
  33. K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
    [CrossRef] [PubMed]
  34. J. J. Koenderink, “Scale time,” Biol. Cybern. 58, 159–162 (1988).
    [CrossRef]
  35. A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
    [CrossRef] [PubMed]
  36. R. E. Fredericksen, R. F. Hess, “Two, three or four temporal channels? A re-re-evaluation,” Invest. Ophthalmol. Vis. Sci. 36, S16 (1995).
  37. A. B. Watson, “Temporal sensitivity,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 1–43.
  38. A. B. Watson, “Probability summation over time,” Vision Res. 19, 512–522 (1979).
    [CrossRef]
  39. G. E. Legge, J. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
    [CrossRef] [PubMed]
  40. G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
    [CrossRef] [PubMed]
  41. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).
  42. P. Kaiser, M. Ayama, R. L. P. Vimal, “Flicker photometry: residual minimum flicker,” J. Opt. Soc. Am. A 3, 1989–1993 (1986).
    [CrossRef] [PubMed]
  43. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
    [CrossRef] [PubMed]
  44. A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
    [CrossRef]
  45. K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the perception of motion,” Ophthal. Physiol. Opt. 12, 201–205 (1992).
    [CrossRef]
  46. K. T. Mullen, C. L. Baker, “A motion aftereffect from an isoluminant stimulus,” Vision Res. 25, 685–688 (1985).
    [CrossRef] [PubMed]
  47. P. Cavanagh, O. E. Favreau, “Colour and luminance share a common motion pathway,” Vision Res. 25, 1595–1601 (1985).
    [CrossRef]
  48. A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
    [CrossRef] [PubMed]
  49. M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
    [CrossRef]
  50. P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
    [CrossRef] [PubMed]

1995 (3)

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

R. E. Fredericksen, R. F. Hess, “Two, three or four temporal channels? A re-re-evaluation,” Invest. Ophthalmol. Vis. Sci. 36, S16 (1995).

1994 (6)

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

S. J. Cropper, “Velocity discrimination in chromatic gratings and beats,” Vision Res. 34, 41–48 (1994).
[CrossRef] [PubMed]

R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3139–3144 (1994).
[CrossRef] [PubMed]

S. J. Waugh, R. F. Hess, “Suprathreshold temporal-frequency discrimination in the fovea and the periphery,” J. Opt. Soc. Am. A 11, 1199–1212 (1994).
[CrossRef]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

1993 (4)

1992 (5)

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the perception of motion,” Ophthal. Physiol. Opt. 12, 201–205 (1992).
[CrossRef]

1990 (1)

1988 (1)

J. J. Koenderink, “Scale time,” Biol. Cybern. 58, 159–162 (1988).
[CrossRef]

1987 (3)

1986 (2)

1985 (5)

K. T. Mullen, C. L. Baker, “A motion aftereffect from an isoluminant stimulus,” Vision Res. 25, 685–688 (1985).
[CrossRef] [PubMed]

P. Cavanagh, O. E. Favreau, “Colour and luminance share a common motion pathway,” Vision Res. 25, 1595–1601 (1985).
[CrossRef]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

R. F. Hess, G. T. Plant, “Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493–1500 (1985).
[CrossRef] [PubMed]

1984 (3)

M. B. Mandler, “Temporal frequency discrimination above threshold,” Vision Res. 24, 1873–1880 (1984).
[CrossRef] [PubMed]

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

1983 (2)

D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,” J. Opt. Soc. Am. 73, 742–750 (1983).
[CrossRef] [PubMed]

P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
[CrossRef] [PubMed]

1982 (1)

P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

1981 (2)

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef] [PubMed]

A. B. Watson, J. G. Robson, “Discrimination at threshold: Labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

1980 (2)

M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
[CrossRef] [PubMed]

G. E. Legge, J. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
[CrossRef] [PubMed]

1979 (2)

A. B. Watson, “Probability summation over time,” Vision Res. 19, 512–522 (1979).
[CrossRef]

W. Richards, “Quantifying sensory channels: generalizing colorimetry to orientation and texture, touch and tones,” Sensory Process. 3, 207–229 (1979).

1975 (1)

P. E. King-Smith, J. J. Kulikowski, “Pattern and flicker detection analyzed by subthreshold summation,” J. Physiol. (London) 249, 519–548 (1975).

1971 (1)

D. Regan, C. W. Tyler, “Some dynamic features of color vision,” Vision Res. 11, 1307–1324 (1971).
[CrossRef] [PubMed]

1966 (1)

1948 (1)

H. L. DeVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1948).

Anderson, S. J.

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

Anstis, S. M.

Ayama, M.

Badcock, D. R.

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Computers 25, 371–383 (1993).
[CrossRef]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

Baker, C. L.

K. T. Mullen, C. L. Baker, “A motion aftereffect from an isoluminant stimulus,” Vision Res. 25, 685–688 (1985).
[CrossRef] [PubMed]

Boulton, J. C.

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the perception of motion,” Ophthal. Physiol. Opt. 12, 201–205 (1992).
[CrossRef]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

Burr, D. C.

D. C. Burr, M. C. Morrone, “Impulse-response functions for chromatic and achromatic stimuli,” J. Opt. Soc. Am. A 10, 1706–1713 (1993).
[CrossRef]

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

Cavanagh, P.

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

P. Cavanagh, O. E. Favreau, “Colour and luminance share a common motion pathway,” Vision Res. 25, 1595–1601 (1985).
[CrossRef]

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

P. Cavanagh, “Vision at equiluminance,” in Vision and Visual Dysfunction: Limits of Vision, J. J. Kulikowski, V. Walsh, I. J. Murray, eds. (Macmillan, London, 1991), Vol. 5, pp. 234–250.

Chapparo, A.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Clifford, C. W. G.

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

Cole, G. R.

Cropper, S. J.

S. J. Cropper, “Velocity discrimination in chromatic gratings and beats,” Vision Res. 34, 41–48 (1994).
[CrossRef] [PubMed]

Derrington, A. M.

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

DeVries, H. L.

H. L. DeVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1948).

Edgar, G. K.

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

Eskew, R. T.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3139–3144 (1994).
[CrossRef] [PubMed]

Favreau, O. E.

P. Cavanagh, O. E. Favreau, “Colour and luminance share a common motion pathway,” Vision Res. 25, 1595–1601 (1985).
[CrossRef]

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Foley, J.

Fredericksen, R. E.

R. E. Fredericksen, R. F. Hess, “Two, three or four temporal channels? A re-re-evaluation,” Invest. Ophthalmol. Vis. Sci. 36, S16 (1995).

Gegenfurtner, K.

M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Hammett, S. T.

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

Harris, M. G.

M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
[CrossRef] [PubMed]

Hawken, M. J.

M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Hess, R. F.

R. E. Fredericksen, R. F. Hess, “Two, three or four temporal channels? A re-re-evaluation,” Invest. Ophthalmol. Vis. Sci. 36, S16 (1995).

S. J. Waugh, R. F. Hess, “Suprathreshold temporal-frequency discrimination in the fovea and the periphery,” J. Opt. Soc. Am. A 11, 1199–1212 (1994).
[CrossRef]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

R. F. Hess, G. T. Plant, “Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493–1500 (1985).
[CrossRef] [PubMed]

Hine, T.

Ikeda, M.

Johnston, A.

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

Kaiser, P.

Kelly, D. H.

King-Smith, P. E.

P. E. King-Smith, J. J. Kulikowski, “Pattern and flicker detection analyzed by subthreshold summation,” J. Physiol. (London) 249, 519–548 (1975).

Koenderink, J. J.

J. J. Koenderink, “Scale time,” Biol. Cybern. 58, 159–162 (1988).
[CrossRef]

Kronauer, R. E.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3139–3144 (1994).
[CrossRef] [PubMed]

Kulikowski, J. J.

P. E. King-Smith, J. J. Kulikowski, “Pattern and flicker detection analyzed by subthreshold summation,” J. Physiol. (London) 249, 519–548 (1975).

Lee, B. B.

Legge, G. E.

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef] [PubMed]

G. E. Legge, J. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
[CrossRef] [PubMed]

MacLeod, D. I. A.

Makous, W.

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

Mandler, M. B.

M. B. Mandler, “Temporal frequency discrimination above threshold,” Vision Res. 24, 1873–1880 (1984).
[CrossRef] [PubMed]

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

Martin, P. R.

McIlhagga, W.

Metha, A. B.

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Computers 25, 371–383 (1993).
[CrossRef]

A. B. Metha, “Detection and direction discrimination in terms of post-receptoral mechanisms,” Ph.D. dissertation (University of Melbourne, Melbourne, Australia, 1994).

Morrone, M. C.

Mullen, K. T.

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the perception of motion,” Ophthal. Physiol. Opt. 12, 201–205 (1992).
[CrossRef]

K. T. Mullen, C. L. Baker, “A motion aftereffect from an isoluminant stimulus,” Vision Res. 25, 685–688 (1985).
[CrossRef] [PubMed]

Plant, G. T.

R. F. Hess, G. T. Plant, “Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493–1500 (1985).
[CrossRef] [PubMed]

Pokorny, J.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Regan, D.

D. Regan, C. W. Tyler, “Some dynamic features of color vision,” Vision Res. 11, 1307–1324 (1971).
[CrossRef] [PubMed]

Richards, W.

W. Richards, “Quantifying sensory channels: generalizing colorimetry to orientation and texture, touch and tones,” Sensory Process. 3, 207–229 (1979).

Robson, J. G.

A. B. Watson, J. G. Robson, “Discrimination at threshold: Labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

J. G. Robson, “Spatial and temporal contrast sensitivity functions of the visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
[CrossRef]

Ryu, A.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Smith, A. T.

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

A. T. Smith, “Velocity perception and discrimination: relation to temporal mechanisms,” Vision Res. 27, 1491–1500 (1987).
[CrossRef] [PubMed]

Smith, V. C.

Snowden, R. J.

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

Stone, L.

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

Stromeyer, C. F.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3139–3144 (1994).
[CrossRef] [PubMed]

Swanson, W. H.

Tang, C.

M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Thompson, P.

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
[CrossRef] [PubMed]

Thompson, P. G.

P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

Tyler, C. W.

Uchikawa, K.

Ueno, T.

Valberg, A.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Vimal, R. L. P.

Vingrys, A. J.

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Computers 25, 371–383 (1993).
[CrossRef]

Watson, A. B.

A. B. Watson, J. G. Robson, “Discrimination at threshold: Labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

A. B. Watson, “Probability summation over time,” Vision Res. 19, 512–522 (1979).
[CrossRef]

A. B. Watson, “Temporal sensitivity,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 1–43.

Waugh, S. J.

Yoshizawa, T.

Behav. Res. Methods Instrum. Computers (1)

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Computers 25, 371–383 (1993).
[CrossRef]

Biol. Cybern. (1)

J. J. Koenderink, “Scale time,” Biol. Cybern. 58, 159–162 (1988).
[CrossRef]

Genetica (1)

H. L. DeVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1948).

Invest. Ophthalmol. Vis. Sci. (1)

R. E. Fredericksen, R. F. Hess, “Two, three or four temporal channels? A re-re-evaluation,” Invest. Ophthalmol. Vis. Sci. 36, S16 (1995).

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (11)

P. Kaiser, M. Ayama, R. L. P. Vimal, “Flicker photometry: residual minimum flicker,” J. Opt. Soc. Am. A 3, 1989–1993 (1986).
[CrossRef] [PubMed]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–50 (1993).
[CrossRef] [PubMed]

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
[CrossRef] [PubMed]

K. Uchikawa, M. Ikeda, “Temporal integration of chromatic double pulses for detection of equal-luminance wavelength changes,” J. Opt. Soc. Am. A 3, 2109–2115 (1986).
[CrossRef] [PubMed]

K. Uchikawa, T. Yoshizawa, “Temporal responses to chromatic and achromatic change inferred from temporal double-pulse integration,” J. Opt. Soc. Am. A 10, 1697–1705 (1993).
[CrossRef]

D. C. Burr, M. C. Morrone, “Impulse-response functions for chromatic and achromatic stimuli,” J. Opt. Soc. Am. A 10, 1706–1713 (1993).
[CrossRef]

S. J. Waugh, R. F. Hess, “Suprathreshold temporal-frequency discrimination in the fovea and the periphery,” J. Opt. Soc. Am. A 11, 1199–1212 (1994).
[CrossRef]

J. Physiol. (London) (2)

P. E. King-Smith, J. J. Kulikowski, “Pattern and flicker detection analyzed by subthreshold summation,” J. Physiol. (London) 249, 519–548 (1975).

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Nature (London) (1)

M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Ophthal. Physiol. Opt. (1)

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the perception of motion,” Ophthal. Physiol. Opt. 12, 201–205 (1992).
[CrossRef]

Sensory Process. (1)

W. Richards, “Quantifying sensory channels: generalizing colorimetry to orientation and texture, touch and tones,” Sensory Process. 3, 207–229 (1979).

Vision Res. (23)

S. J. Cropper, “Velocity discrimination in chromatic gratings and beats,” Vision Res. 34, 41–48 (1994).
[CrossRef] [PubMed]

D. Regan, C. W. Tyler, “Some dynamic features of color vision,” Vision Res. 11, 1307–1324 (1971).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

A. B. Watson, J. G. Robson, “Discrimination at threshold: Labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
[CrossRef] [PubMed]

M. B. Mandler, “Temporal frequency discrimination above threshold,” Vision Res. 24, 1873–1880 (1984).
[CrossRef] [PubMed]

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

R. F. Hess, G. T. Plant, “Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493–1500 (1985).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
[CrossRef] [PubMed]

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

A. T. Smith, “Velocity perception and discrimination: relation to temporal mechanisms,” Vision Res. 27, 1491–1500 (1987).
[CrossRef] [PubMed]

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3139–3144 (1994).
[CrossRef] [PubMed]

K. T. Mullen, C. L. Baker, “A motion aftereffect from an isoluminant stimulus,” Vision Res. 25, 685–688 (1985).
[CrossRef] [PubMed]

P. Cavanagh, O. E. Favreau, “Colour and luminance share a common motion pathway,” Vision Res. 25, 1595–1601 (1985).
[CrossRef]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef] [PubMed]

A. B. Watson, “Probability summation over time,” Vision Res. 19, 512–522 (1979).
[CrossRef]

Other (4)

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

A. B. Watson, “Temporal sensitivity,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 1–43.

A. B. Metha, “Detection and direction discrimination in terms of post-receptoral mechanisms,” Ph.D. dissertation (University of Melbourne, Melbourne, Australia, 1994).

P. Cavanagh, “Vision at equiluminance,” in Vision and Visual Dysfunction: Limits of Vision, J. J. Kulikowski, V. Walsh, I. J. Murray, eds. (Macmillan, London, 1991), Vol. 5, pp. 234–250.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

RG isoluminance ratios as a function of TF. Each point represents the mean of 10 minimum motion settings in the L:M plane of cone contrast space. The error bars represent 1 SD. The filled squares are the results for observer ABM, and the open circles are for observer KTM.

Fig. 2
Fig. 2

Example of the four psychometric functions generated by each 2 × 2-IFC experimental block. The filled squares represent detection performance (Question 1) for the 2-Hz (top) and the 8-Hz (bottom) stimuli, which were presented 40 times at five contrast levels in random order spanning predetermined threshold ranges. Detection psychometric functions were fitted by use of Weibull functions constrained to give chance performance at low contrast levels. Weighting was applied by binomial SD estimates. Open squares represent identification performance (Question 2). Because identification performance can be subjectively biased, Weibull functions fitted to these data were constrained by complementary guess rates, as explained in the text.

Fig. 3
Fig. 3

Temporal cone contrast sensitivity functions for both observers for (a) achromatic and (b) RG isoluminant stimuli. The filled squares represent the mean and the SD of the five detection thresholds determined for each temporal frequency during the 2 × 2-IFC comparison sessions. The thicker, lighter curves represent the model predictions for detection performance after parameters were adjusted to give the best fit for both detection and identification data. The curves labeled H1 and H2 in (a) and H0 and H1 in (b) are the MTF’s of the inferred filters underlying the luminance and the RG mechanisms, respectively. The normalized IRF’s of the best-fitting filters are shown as an inset in each case; the filter gain factors have not been applied (refer to the text and to Table 1 for details). Figure 1 shows that the luminance mechanism receives varying L- and M-cone contrast input as a function of TF; therefore luminance sensitivity is given here as the reciprocal (in cone contrast units) of the projection magnitude of the threshold achromatic cardinal stimuli onto the measured luminance mechanism for each TF. RG sensitivity is given as the reciprocal of the projection magnitude of the threshold isoluminant stimuli onto the RG mechanism, which we assume receives fixed (equal and opposite) L- and M-cone contrast input at all TF’s.

Fig. 4
Fig. 4

Identification performance among achromatic TF pairs for observer ABM. For conditions comparing the TF labeled and marked by an arrow in each panel (TF2), the symbols represent alpha (the multiplicative factor by which contrast must be raised above detection threshold to permit 75% correct identification) for each compared frequency (TF1). The error bars are SD estimates derived from the detection and identification psychometric function fits. The thicker, lighter curves represent the model prediction after parameters were adjusted to give the best fit simultaneously for both the detection and the identification data, resulting in the filter shapes shown in the insets of Fig. 3.

Fig. 5
Fig. 5

Identification performance among achromatic TF pairs for observer KTM. Other details are the same as for Fig. 4.

Fig. 6
Fig. 6

Identification performance among RG TF pairs for observer ABM. Other details are the same as for Fig. 4.

Fig. 7
Fig. 7

Identification performance among RG TF pairs for observer KTM. Other details are the same as for Fig. 4.

Fig. 8
Fig. 8

Representation of internal space governed by the transduced output of the two basis filters. The thick curve indicates the squared peak responses of model filters A and B at detection threshold; the filled squares show this condition at the temporal frequencies indicated. Refer to the text for further details.

Fig. 9
Fig. 9

Speed signal as determined by the ratio of underlying filter outputs for RG and achromatic (Ach) stimuli derived for observer KTM. Higher chromatic TF’s are required for the same speed signal as for a slower achromatic stimulus, assuming a common internal response space.

Tables (1)

Tables Icon

Table 1 The Best-Fitting Parameters and the Least Chi-Squared Values Resulting from the Model Fit to the Detection and TF Identification Dataa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

h 0 ( t ) = A 0 exp [ - ( ln ( t / τ ) σ ) 2 ] ,
h 1 ( t ) = 2 A 1 [ ln ( t / τ ) t σ 2 ] exp [ - ( ln ( t / τ ) σ ) 2 ] ,
h 2 ( t ) = A 2 { - 2 ( t 2 σ 2 ) + 2 ln ( t / τ ) ( t 2 σ 2 ) + 4 [ ln ( t / τ ) ] 2 ( t 2 σ 4 ) } × exp { - [ ln ( t / τ ) σ ] 2 } ,
g ( t , f ) = [ ½ - ½ cos ( 2 π t ) ] cos [ 2 π f ( t - ½ ) ] ,
R i ( t , f ) = C g ( t , f ) * h i ( t ) ,
p i ( t ) = 1 - 2 ( - R i ( t ) β ) .
P i = 1 - 2 [ - T start T end R i ( t ) β d t ] .
P Det = 1 - ( 1 - P A ) ( 1 - P B ) = 1 - 2 [ - T start T end ( R A β + R B β ) d t ] .
1 = T start T end ( R A β + R B β ) d t .
C thr = { T start T end [ g ( t , f ) * h A ( t ) β + g ( t , f ) * h B ( t ) β ] d t } - 1 / β .

Metrics