Abstract

A new technique is proposed for the recovery of optical phase from intensity information. The method is based on the decomposition of the transport-of-intensity equation into a series of Zernike polynomials. An explicit matrix formula is derived, expressing the Zernike coefficients of the phase as functions of the Zernike coefficients of the wave-front curvature inside the aperture and the Fourier coefficients of the wave-front boundary slopes. Analytical expressions are given, as well as a numerical example of the corresponding phase retrieval matrix. This work lays the basis for an effective algorithm for fast and accurate phase retrieval.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials

A. J. E. M. Janssen
J. Opt. Soc. Am. A 31(7) 1604-1613 (2014)

Phase retrieval on annular and annular sector pupils by using the eigenfunction method to solve the transport of intensity equation

Shengyang Huang, Fengjie Xi, Changhai Liu, and Zongfu Jiang
J. Opt. Soc. Am. A 29(4) 513-520 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (68)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription