Abstract

A hybrid finite-difference time-domain and angular-spectrum propagation modeling technique is used to study the imaging properties of a near-field optical scanning system with dielectric samples. The model is used to calculate system transfer functions based on scanning sinusoidal gratings of various spatial periods or on scanning a straight edge and then taking a derivative and a Fourier transform. Results from these two methods are in good agreement. A square-wave grating is simulated by linear addition of component sine-wave grating images that are weighted by the transfer function. The image generated by this method agrees well with an image generated by direct use of the hybrid model. In the region of parameter space investigated with the model, the near-field optical scanning system exhibits nearly linear behavior. The region of linear operation depends on the index of the sample and on the probe-to-sample spacing.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription