Abstract

In eccentric photorefraction, light returning from the retina of the eye is photographed by a camera focused on the eye’s pupil. We use a geometrical model of eccentric photorefraction to generate intensity profiles across the pupil image. The intensity profiles for three different monochromatic aberration functions induced in a single eye are predicted and show good agreement with the measured eccentric photorefraction intensity profiles. A directional reflection from the retina is incorporated into the calculation. Intensity profiles for symmetric and asymmetric aberrations are generated and measured. The latter profile shows a dependency on the source position and the meridian. The magnitude of the effect of thresholding on measured pattern extents is predicted. Monochromatic aberrations in human eyes will cause deviations in the eccentric photorefraction measurements from traditional crescents caused by defocus and may cause misdiagnoses of ametropia or anisometropia. Our results suggest that measuring refraction along the vertical meridian is preferred for screening studies with the eccentric photorefractor.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bobier, O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985).
    [CrossRef] [PubMed]
  2. H. C. Howland, “Optics of photoretinoscopy: results from ray tracing,” Am. J. Optom. Physiol. Opt. 62, 621–625 (1985).
    [CrossRef] [PubMed]
  3. F. Schaeffel, H. C. Howland, S. Weiss, E. Zrenner, “Measurement of the dynamics of accommodation by automated real time photorefraction,” Invest. Ophthalmol. Vis. Sci. 34, 1306 (1993).
  4. M. C. W. Campbell, W. R. Bobier, A. Roorda, “Effect of monochromatic aberrations on photorefraction,” J. Opt. Soc. Am. A 12, 1637–1646 (1995).
    [CrossRef]
  5. A. Roorda, W. R. Bobier, M. C. W. Campbell, “The effect of the eye’s chromatic aberration on eccentric photorefraction,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 146–149.
  6. W. Wesemann, A. M. Norcia, D. Allen, “Theory of eccentric photorefraction (photoretinoscopy): astigmatic eyes,” J. Opt. Soc. Am. A 8, 2038–2047 (1991).
    [CrossRef] [PubMed]
  7. I. J. Hodgkinson, K. M. Chong, A. C. B. Molteno, “Photorefraction of the living eye: a model for linear knife edge photoscreening,” Appl. Opt. 30, 2263–2269 (1991).
    [CrossRef] [PubMed]
  8. F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. D. Home, ed. (Oriel, London, 1969), pp. 375–385.
  9. W. R. Bobier, “Eccentric photorefraction: a method to measure accommodation of highly hypermetropic infants,” Clin. Vision Sci. 5, 45–66 (1990).
  10. N. Sayles, H. C. Howland, “Relation of the retinoscopic reflex to the monochromatic aberration of the eye,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 142 (1985).
  11. M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
    [CrossRef] [PubMed]
  12. W. N. Charman, “Optics of the human eye,” in Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Vol. 1, W. N. Charman, ed., pp. 1–14.
  13. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).
  14. W. R. Bobier, “Eccentric photorefraction,” Ph.D. dissertation (University of Cambridge, Cambridge, 1987).
  15. J.-M. Gorrand, A. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
    [CrossRef] [PubMed]
  16. G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
    [CrossRef] [PubMed]
  17. R. Röhler, F. Schmeilau, “Properties of isolated frog retinae in reflecting non-polarized and polarized light,” Vision Res. 16, 241–246 (1976).
    [CrossRef] [PubMed]
  18. P. Artal, “Incorporation of directional effects of the retina into computations of optical transfer function of human eyes,” J. Opt. Soc. Am. A 6, 1941–1944 (1989).
    [CrossRef] [PubMed]
  19. W. N. Charman, B. Saunders, “Theoretical and practical factors influencing the optical performance of contact lenses for the presbyope,” J. Brit. Cont. Lens Assoc. 13, 67–75 (1990).
    [CrossRef]
  20. M. C. W. Campbell, W. N. Charman, L. Voisin, C. Cui, “Psychophysical measurement of the optical quality of varifocal contact lenses,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 12–15.
  21. H. C. Howland, O. J. Braddick, J. Atkinson, B. Howland, “Optics of photorefraction: orthogonal and isotropic methods,” J. Opt. Soc. Am. 73, 1701–1708 (1983).
    [CrossRef] [PubMed]
  22. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]
  23. I. J. Hodgkinson, P. B. Greer, A. C. B. Molteno, “Point spread function for light scattered in the human ocular fundus,” J. Opt. Soc. Am. A 11, 479–486 (1994).
    [CrossRef]
  24. W. N. Charman, “Reflection of plane-polarized light by the retina,” Br. J. Physiol. Opt. 34, 34–49 (1980).
    [PubMed]
  25. K. Kaakinen, H. O. Kaseva, K. Eeva-Raija, “Mass screening of children for strabismus or ametropia with two flash photoskiascopy,” Acta Ophthalmol. 64, 105–110 (1986).
  26. K. Kaakinen, L. Ranta-Kemppainen, “Screening of infants for strabismus and refractive errors with two-flash photorefraction with and without cycloplegia,” Acta Ophthalmol. 64, 578–582 (1986).
  27. D. P. Crewther, P. M. Kiely, A. McCarthy, S. G. Crewther, “Evaluation of paraxial photorefraction in screening a population of monkeys for refractive errors,” Clin. Vision Sci. 3, 213–220 (1988).
  28. R. H. Duckman, B. Meyer, “The use of photoretinoscopy as a screening technique in the assessment of anisometropia and significant refractive error in infants/toddlers/children and special populations,” Am. J. Optom. Physiol. Opt. 64, 604–610 (1987).
    [CrossRef] [PubMed]
  29. C. Hsu-Winges, R. D. Hamer, A. M. Norcia, H. Wesemann, C. Chan, “Polaroid photorefractive screening of infants,” J. Pediatr. Ophthalmol. Strabismus 26, 254–260 (1989).
    [PubMed]
  30. R. A. Kennedy, S. B. Sheps, “A comparison of photo-screening techniques for amblyopic factors in children,” Can. J. Ophthalomol. 24, 259–264 (1989).
  31. A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983).
    [PubMed]
  32. J. Sjostrand, M. Abrahamsson, G. Fabain, O. Weinhall, “Photorefraction: a useful tool to detect refraction errors,” Acta Ophthalmol. Suppl. 157, 46–52 (1983).

1995

1994

1993

F. Schaeffel, H. C. Howland, S. Weiss, E. Zrenner, “Measurement of the dynamics of accommodation by automated real time photorefraction,” Invest. Ophthalmol. Vis. Sci. 34, 1306 (1993).

1991

1990

W. N. Charman, B. Saunders, “Theoretical and practical factors influencing the optical performance of contact lenses for the presbyope,” J. Brit. Cont. Lens Assoc. 13, 67–75 (1990).
[CrossRef]

W. R. Bobier, “Eccentric photorefraction: a method to measure accommodation of highly hypermetropic infants,” Clin. Vision Sci. 5, 45–66 (1990).

M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef] [PubMed]

1989

C. Hsu-Winges, R. D. Hamer, A. M. Norcia, H. Wesemann, C. Chan, “Polaroid photorefractive screening of infants,” J. Pediatr. Ophthalmol. Strabismus 26, 254–260 (1989).
[PubMed]

R. A. Kennedy, S. B. Sheps, “A comparison of photo-screening techniques for amblyopic factors in children,” Can. J. Ophthalomol. 24, 259–264 (1989).

P. Artal, “Incorporation of directional effects of the retina into computations of optical transfer function of human eyes,” J. Opt. Soc. Am. A 6, 1941–1944 (1989).
[CrossRef] [PubMed]

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

1988

D. P. Crewther, P. M. Kiely, A. McCarthy, S. G. Crewther, “Evaluation of paraxial photorefraction in screening a population of monkeys for refractive errors,” Clin. Vision Sci. 3, 213–220 (1988).

1987

R. H. Duckman, B. Meyer, “The use of photoretinoscopy as a screening technique in the assessment of anisometropia and significant refractive error in infants/toddlers/children and special populations,” Am. J. Optom. Physiol. Opt. 64, 604–610 (1987).
[CrossRef] [PubMed]

1986

K. Kaakinen, H. O. Kaseva, K. Eeva-Raija, “Mass screening of children for strabismus or ametropia with two flash photoskiascopy,” Acta Ophthalmol. 64, 105–110 (1986).

K. Kaakinen, L. Ranta-Kemppainen, “Screening of infants for strabismus and refractive errors with two-flash photorefraction with and without cycloplegia,” Acta Ophthalmol. 64, 578–582 (1986).

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef] [PubMed]

1985

N. Sayles, H. C. Howland, “Relation of the retinoscopic reflex to the monochromatic aberration of the eye,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 142 (1985).

W. R. Bobier, O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985).
[CrossRef] [PubMed]

H. C. Howland, “Optics of photoretinoscopy: results from ray tracing,” Am. J. Optom. Physiol. Opt. 62, 621–625 (1985).
[CrossRef] [PubMed]

1984

J.-M. Gorrand, A. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[CrossRef] [PubMed]

1983

A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983).
[PubMed]

J. Sjostrand, M. Abrahamsson, G. Fabain, O. Weinhall, “Photorefraction: a useful tool to detect refraction errors,” Acta Ophthalmol. Suppl. 157, 46–52 (1983).

H. C. Howland, O. J. Braddick, J. Atkinson, B. Howland, “Optics of photorefraction: orthogonal and isotropic methods,” J. Opt. Soc. Am. 73, 1701–1708 (1983).
[CrossRef] [PubMed]

1980

W. N. Charman, “Reflection of plane-polarized light by the retina,” Br. J. Physiol. Opt. 34, 34–49 (1980).
[PubMed]

1976

R. Röhler, F. Schmeilau, “Properties of isolated frog retinae in reflecting non-polarized and polarized light,” Vision Res. 16, 241–246 (1976).
[CrossRef] [PubMed]

Abrahamsson, M.

J. Sjostrand, M. Abrahamsson, G. Fabain, O. Weinhall, “Photorefraction: a useful tool to detect refraction errors,” Acta Ophthalmol. Suppl. 157, 46–52 (1983).

Alfieri, A.

J.-M. Gorrand, A. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[CrossRef] [PubMed]

Allen, D.

Artal, P.

Atkinson, J.

Berny, F.

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. D. Home, ed. (Oriel, London, 1969), pp. 375–385.

Bobier, W. R.

M. C. W. Campbell, W. R. Bobier, A. Roorda, “Effect of monochromatic aberrations on photorefraction,” J. Opt. Soc. Am. A 12, 1637–1646 (1995).
[CrossRef]

W. R. Bobier, “Eccentric photorefraction: a method to measure accommodation of highly hypermetropic infants,” Clin. Vision Sci. 5, 45–66 (1990).

W. R. Bobier, O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985).
[CrossRef] [PubMed]

A. Roorda, W. R. Bobier, M. C. W. Campbell, “The effect of the eye’s chromatic aberration on eccentric photorefraction,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 146–149.

W. R. Bobier, “Eccentric photorefraction,” Ph.D. dissertation (University of Cambridge, Cambridge, 1987).

Boire, J.-Y.

J.-M. Gorrand, A. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[CrossRef] [PubMed]

Braddick, O. J.

W. R. Bobier, O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985).
[CrossRef] [PubMed]

H. C. Howland, O. J. Braddick, J. Atkinson, B. Howland, “Optics of photorefraction: orthogonal and isotropic methods,” J. Opt. Soc. Am. 73, 1701–1708 (1983).
[CrossRef] [PubMed]

Campbell, M. C. W.

M. C. W. Campbell, W. R. Bobier, A. Roorda, “Effect of monochromatic aberrations on photorefraction,” J. Opt. Soc. Am. A 12, 1637–1646 (1995).
[CrossRef]

M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef] [PubMed]

M. C. W. Campbell, W. N. Charman, L. Voisin, C. Cui, “Psychophysical measurement of the optical quality of varifocal contact lenses,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 12–15.

A. Roorda, W. R. Bobier, M. C. W. Campbell, “The effect of the eye’s chromatic aberration on eccentric photorefraction,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 146–149.

Chan, C.

C. Hsu-Winges, R. D. Hamer, A. M. Norcia, H. Wesemann, C. Chan, “Polaroid photorefractive screening of infants,” J. Pediatr. Ophthalmol. Strabismus 26, 254–260 (1989).
[PubMed]

Charman, W. N.

W. N. Charman, B. Saunders, “Theoretical and practical factors influencing the optical performance of contact lenses for the presbyope,” J. Brit. Cont. Lens Assoc. 13, 67–75 (1990).
[CrossRef]

W. N. Charman, “Reflection of plane-polarized light by the retina,” Br. J. Physiol. Opt. 34, 34–49 (1980).
[PubMed]

M. C. W. Campbell, W. N. Charman, L. Voisin, C. Cui, “Psychophysical measurement of the optical quality of varifocal contact lenses,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 12–15.

W. N. Charman, “Optics of the human eye,” in Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Vol. 1, W. N. Charman, ed., pp. 1–14.

Chong, K. M.

Crewther, D. P.

D. P. Crewther, P. M. Kiely, A. McCarthy, S. G. Crewther, “Evaluation of paraxial photorefraction in screening a population of monkeys for refractive errors,” Clin. Vision Sci. 3, 213–220 (1988).

Crewther, S. G.

D. P. Crewther, P. M. Kiely, A. McCarthy, S. G. Crewther, “Evaluation of paraxial photorefraction in screening a population of monkeys for refractive errors,” Clin. Vision Sci. 3, 213–220 (1988).

Cui, C.

M. C. W. Campbell, W. N. Charman, L. Voisin, C. Cui, “Psychophysical measurement of the optical quality of varifocal contact lenses,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 12–15.

Delori, F. C.

Duckman, R. H.

R. H. Duckman, B. Meyer, “The use of photoretinoscopy as a screening technique in the assessment of anisometropia and significant refractive error in infants/toddlers/children and special populations,” Am. J. Optom. Physiol. Opt. 64, 604–610 (1987).
[CrossRef] [PubMed]

Eeva-Raija, K.

K. Kaakinen, H. O. Kaseva, K. Eeva-Raija, “Mass screening of children for strabismus or ametropia with two flash photoskiascopy,” Acta Ophthalmol. 64, 105–110 (1986).

Fabain, G.

J. Sjostrand, M. Abrahamsson, G. Fabain, O. Weinhall, “Photorefraction: a useful tool to detect refraction errors,” Acta Ophthalmol. Suppl. 157, 46–52 (1983).

Gorrand, J.-M.

J.-M. Gorrand, A. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[CrossRef] [PubMed]

Greer, P. B.

Hamer, R. D.

C. Hsu-Winges, R. D. Hamer, A. M. Norcia, H. Wesemann, C. Chan, “Polaroid photorefractive screening of infants,” J. Pediatr. Ophthalmol. Strabismus 26, 254–260 (1989).
[PubMed]

Harrison, E. M.

M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef] [PubMed]

Hoare-Nairne, I.

A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983).
[PubMed]

Hodgkinson, I. J.

I. J. Hodgkinson, P. B. Greer, A. C. B. Molteno, “Point spread function for light scattered in the human ocular fundus,” J. Opt. Soc. Am. A 11, 479–486 (1994).
[CrossRef]

I. J. Hodgkinson, K. M. Chong, A. C. B. Molteno, “Photorefraction of the living eye: a model for linear knife edge photoscreening,” Appl. Opt. 30, 2263–2269 (1991).
[CrossRef] [PubMed]

A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983).
[PubMed]

Howland, B.

Howland, H. C.

F. Schaeffel, H. C. Howland, S. Weiss, E. Zrenner, “Measurement of the dynamics of accommodation by automated real time photorefraction,” Invest. Ophthalmol. Vis. Sci. 34, 1306 (1993).

N. Sayles, H. C. Howland, “Relation of the retinoscopic reflex to the monochromatic aberration of the eye,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 142 (1985).

H. C. Howland, “Optics of photoretinoscopy: results from ray tracing,” Am. J. Optom. Physiol. Opt. 62, 621–625 (1985).
[CrossRef] [PubMed]

H. C. Howland, O. J. Braddick, J. Atkinson, B. Howland, “Optics of photorefraction: orthogonal and isotropic methods,” J. Opt. Soc. Am. 73, 1701–1708 (1983).
[CrossRef] [PubMed]

Hsu-Winges, C.

C. Hsu-Winges, R. D. Hamer, A. M. Norcia, H. Wesemann, C. Chan, “Polaroid photorefractive screening of infants,” J. Pediatr. Ophthalmol. Strabismus 26, 254–260 (1989).
[PubMed]

Kaakinen, K.

K. Kaakinen, H. O. Kaseva, K. Eeva-Raija, “Mass screening of children for strabismus or ametropia with two flash photoskiascopy,” Acta Ophthalmol. 64, 105–110 (1986).

K. Kaakinen, L. Ranta-Kemppainen, “Screening of infants for strabismus and refractive errors with two-flash photorefraction with and without cycloplegia,” Acta Ophthalmol. 64, 578–582 (1986).

Kaseva, H. O.

K. Kaakinen, H. O. Kaseva, K. Eeva-Raija, “Mass screening of children for strabismus or ametropia with two flash photoskiascopy,” Acta Ophthalmol. 64, 105–110 (1986).

Kennedy, R. A.

R. A. Kennedy, S. B. Sheps, “A comparison of photo-screening techniques for amblyopic factors in children,” Can. J. Ophthalomol. 24, 259–264 (1989).

Kiely, P. M.

D. P. Crewther, P. M. Kiely, A. McCarthy, S. G. Crewther, “Evaluation of paraxial photorefraction in screening a population of monkeys for refractive errors,” Clin. Vision Sci. 3, 213–220 (1988).

McCarthy, A.

D. P. Crewther, P. M. Kiely, A. McCarthy, S. G. Crewther, “Evaluation of paraxial photorefraction in screening a population of monkeys for refractive errors,” Clin. Vision Sci. 3, 213–220 (1988).

Meyer, B.

R. H. Duckman, B. Meyer, “The use of photoretinoscopy as a screening technique in the assessment of anisometropia and significant refractive error in infants/toddlers/children and special populations,” Am. J. Optom. Physiol. Opt. 64, 604–610 (1987).
[CrossRef] [PubMed]

Molteno, A. C. B.

I. J. Hodgkinson, P. B. Greer, A. C. B. Molteno, “Point spread function for light scattered in the human ocular fundus,” J. Opt. Soc. Am. A 11, 479–486 (1994).
[CrossRef]

I. J. Hodgkinson, K. M. Chong, A. C. B. Molteno, “Photorefraction of the living eye: a model for linear knife edge photoscreening,” Appl. Opt. 30, 2263–2269 (1991).
[CrossRef] [PubMed]

A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983).
[PubMed]

Norcia, A. M.

W. Wesemann, A. M. Norcia, D. Allen, “Theory of eccentric photorefraction (photoretinoscopy): astigmatic eyes,” J. Opt. Soc. Am. A 8, 2038–2047 (1991).
[CrossRef] [PubMed]

C. Hsu-Winges, R. D. Hamer, A. M. Norcia, H. Wesemann, C. Chan, “Polaroid photorefractive screening of infants,” J. Pediatr. Ophthalmol. Strabismus 26, 254–260 (1989).
[PubMed]

O’Brien, N. E.

A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983).
[PubMed]

Parr, I. C.

A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983).
[PubMed]

Pflibsen, K. P.

Ranta-Kemppainen, L.

K. Kaakinen, L. Ranta-Kemppainen, “Screening of infants for strabismus and refractive errors with two-flash photorefraction with and without cycloplegia,” Acta Ophthalmol. 64, 578–582 (1986).

Röhler, R.

R. Röhler, F. Schmeilau, “Properties of isolated frog retinae in reflecting non-polarized and polarized light,” Vision Res. 16, 241–246 (1976).
[CrossRef] [PubMed]

Roorda, A.

M. C. W. Campbell, W. R. Bobier, A. Roorda, “Effect of monochromatic aberrations on photorefraction,” J. Opt. Soc. Am. A 12, 1637–1646 (1995).
[CrossRef]

A. Roorda, W. R. Bobier, M. C. W. Campbell, “The effect of the eye’s chromatic aberration on eccentric photorefraction,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 146–149.

Saunders, B.

W. N. Charman, B. Saunders, “Theoretical and practical factors influencing the optical performance of contact lenses for the presbyope,” J. Brit. Cont. Lens Assoc. 13, 67–75 (1990).
[CrossRef]

Sayles, N.

N. Sayles, H. C. Howland, “Relation of the retinoscopic reflex to the monochromatic aberration of the eye,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 142 (1985).

Schaeffel, F.

F. Schaeffel, H. C. Howland, S. Weiss, E. Zrenner, “Measurement of the dynamics of accommodation by automated real time photorefraction,” Invest. Ophthalmol. Vis. Sci. 34, 1306 (1993).

Schmeilau, F.

R. Röhler, F. Schmeilau, “Properties of isolated frog retinae in reflecting non-polarized and polarized light,” Vision Res. 16, 241–246 (1976).
[CrossRef] [PubMed]

Sheps, S. B.

R. A. Kennedy, S. B. Sheps, “A comparison of photo-screening techniques for amblyopic factors in children,” Can. J. Ophthalomol. 24, 259–264 (1989).

Simonet, P.

M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef] [PubMed]

Simpson, A.

A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983).
[PubMed]

Sjostrand, J.

J. Sjostrand, M. Abrahamsson, G. Fabain, O. Weinhall, “Photorefraction: a useful tool to detect refraction errors,” Acta Ophthalmol. Suppl. 157, 46–52 (1983).

Slansky, S.

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. D. Home, ed. (Oriel, London, 1969), pp. 375–385.

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).

van Blokland, G. J.

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef] [PubMed]

Voisin, L.

M. C. W. Campbell, W. N. Charman, L. Voisin, C. Cui, “Psychophysical measurement of the optical quality of varifocal contact lenses,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 12–15.

Watts, S. D.

A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983).
[PubMed]

Weinhall, O.

J. Sjostrand, M. Abrahamsson, G. Fabain, O. Weinhall, “Photorefraction: a useful tool to detect refraction errors,” Acta Ophthalmol. Suppl. 157, 46–52 (1983).

Weiss, S.

F. Schaeffel, H. C. Howland, S. Weiss, E. Zrenner, “Measurement of the dynamics of accommodation by automated real time photorefraction,” Invest. Ophthalmol. Vis. Sci. 34, 1306 (1993).

Wesemann, H.

C. Hsu-Winges, R. D. Hamer, A. M. Norcia, H. Wesemann, C. Chan, “Polaroid photorefractive screening of infants,” J. Pediatr. Ophthalmol. Strabismus 26, 254–260 (1989).
[PubMed]

Wesemann, W.

Zrenner, E.

F. Schaeffel, H. C. Howland, S. Weiss, E. Zrenner, “Measurement of the dynamics of accommodation by automated real time photorefraction,” Invest. Ophthalmol. Vis. Sci. 34, 1306 (1993).

Acta Ophthalmol.

K. Kaakinen, H. O. Kaseva, K. Eeva-Raija, “Mass screening of children for strabismus or ametropia with two flash photoskiascopy,” Acta Ophthalmol. 64, 105–110 (1986).

K. Kaakinen, L. Ranta-Kemppainen, “Screening of infants for strabismus and refractive errors with two-flash photorefraction with and without cycloplegia,” Acta Ophthalmol. 64, 578–582 (1986).

Acta Ophthalmol. Suppl.

J. Sjostrand, M. Abrahamsson, G. Fabain, O. Weinhall, “Photorefraction: a useful tool to detect refraction errors,” Acta Ophthalmol. Suppl. 157, 46–52 (1983).

Am. J. Optom. Physiol. Opt.

R. H. Duckman, B. Meyer, “The use of photoretinoscopy as a screening technique in the assessment of anisometropia and significant refractive error in infants/toddlers/children and special populations,” Am. J. Optom. Physiol. Opt. 64, 604–610 (1987).
[CrossRef] [PubMed]

W. R. Bobier, O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985).
[CrossRef] [PubMed]

H. C. Howland, “Optics of photoretinoscopy: results from ray tracing,” Am. J. Optom. Physiol. Opt. 62, 621–625 (1985).
[CrossRef] [PubMed]

Appl. Opt.

Br. J. Physiol. Opt.

W. N. Charman, “Reflection of plane-polarized light by the retina,” Br. J. Physiol. Opt. 34, 34–49 (1980).
[PubMed]

Can. J. Ophthalomol.

R. A. Kennedy, S. B. Sheps, “A comparison of photo-screening techniques for amblyopic factors in children,” Can. J. Ophthalomol. 24, 259–264 (1989).

Clin. Vision Sci.

D. P. Crewther, P. M. Kiely, A. McCarthy, S. G. Crewther, “Evaluation of paraxial photorefraction in screening a population of monkeys for refractive errors,” Clin. Vision Sci. 3, 213–220 (1988).

W. R. Bobier, “Eccentric photorefraction: a method to measure accommodation of highly hypermetropic infants,” Clin. Vision Sci. 5, 45–66 (1990).

Invest. Ophthalmol. Vis. Sci.

F. Schaeffel, H. C. Howland, S. Weiss, E. Zrenner, “Measurement of the dynamics of accommodation by automated real time photorefraction,” Invest. Ophthalmol. Vis. Sci. 34, 1306 (1993).

Invest. Ophthalmol. Vis. Sci. Suppl.

N. Sayles, H. C. Howland, “Relation of the retinoscopic reflex to the monochromatic aberration of the eye,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 142 (1985).

J. Brit. Cont. Lens Assoc.

W. N. Charman, B. Saunders, “Theoretical and practical factors influencing the optical performance of contact lenses for the presbyope,” J. Brit. Cont. Lens Assoc. 13, 67–75 (1990).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Pediatr. Ophthalmol. Strabismus

C. Hsu-Winges, R. D. Hamer, A. M. Norcia, H. Wesemann, C. Chan, “Polaroid photorefractive screening of infants,” J. Pediatr. Ophthalmol. Strabismus 26, 254–260 (1989).
[PubMed]

Trans. Ophthalmol. Soc. N. Z.

A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983).
[PubMed]

Vision Res.

J.-M. Gorrand, A. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[CrossRef] [PubMed]

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef] [PubMed]

R. Röhler, F. Schmeilau, “Properties of isolated frog retinae in reflecting non-polarized and polarized light,” Vision Res. 16, 241–246 (1976).
[CrossRef] [PubMed]

M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef] [PubMed]

Other

W. N. Charman, “Optics of the human eye,” in Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Vol. 1, W. N. Charman, ed., pp. 1–14.

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).

W. R. Bobier, “Eccentric photorefraction,” Ph.D. dissertation (University of Cambridge, Cambridge, 1987).

M. C. W. Campbell, W. N. Charman, L. Voisin, C. Cui, “Psychophysical measurement of the optical quality of varifocal contact lenses,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 12–15.

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. D. Home, ed. (Oriel, London, 1969), pp. 375–385.

A. Roorda, W. R. Bobier, M. C. W. Campbell, “The effect of the eye’s chromatic aberration on eccentric photorefraction,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 146–149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Light from the source forms a blur uv on the surface of the retina. The light is diffusely reflected from the retina, and an image of blur uv can be constructed at the far point of the eye. This aerial image is labeled uv′. Some of the rays from point v pass through v′ and enter the aperture of the camera. These rays are the shaded bundle of rays in the figure. If a ray from a particular point in the pupil enters the camera aperture, then that point on the pupil will appear illuminated. This is how the crescent is formed. The front view of the pupil illustrates the crescent that would appear in this case. In this figure the eye is myopic with no aberrations. One situates the limiting aperture at the source plane by putting a thin shield across one half of the lens. The eccentricity is the distance from the light source to the edge of the shield.

Fig. 2
Fig. 2

The principal ray from each point on the retinal blur emerges from the center of the entrance pupil. Thus the angular density of principal rays will be a scaled distribution equivalent to the intensity of the retinal point spread.

Fig. 3
Fig. 3

The diffusely reflected rays from a single point on the retina are traced out of the eye. The principal ray is the heavy dashed line from point U on the retina. This ray trace illustrates several rays traced out of the eye through the points labeled 4 to −4 that intersect the principal ray at the corresponding far points. The bundles of rays (shaded) that enter the limiting aperture of the camera define the regions where crescents will appear in the pupil. In this case a comatic-type aberration combined with defocus results in a split crescent photographed in the pupil plane.

Fig. 4
Fig. 4

Transverse aberration data for the three cases measured on a single subject (AR, right eye) at 3 D accommodative state. The data and the curve fit are shown for the PA1 lens to illustrate the accuracy of the fit. The three cases are unaided eye (low aberrations), PA1 lens (asymmetric aberration or decentered positive spherical aberration), and PS45 lens (symmetric, negative spherical aberration).

Fig. 5
Fig. 5

Eccentric photorefraction images at −3 D paraxial refractive state (focused at the source) obtained by use of a temporal source, 1-mm eccentricity, and a 0.33-m working distance. The images are of the full pupil. The bright spot in the center of the pupil is the first Purkinje image and can be ignored. The experimental profiles (solid curves) are taken directly from the horizontal meridian of the images. The background scatter has been subtracted from each profile. The computer-generated profiles are the expected intensity profiles for the same refractive state. Long-dashed curves are the profiles with directionality, and short-dashed curves represent calculations before directionality was incorporated. (a) Unaided eye: no crescent observed, only background scatter. (b) PA1 lens: diffuse crescent pattern observed extending throughout the pupil with peak intensity close to the center. (c) PS45 lens: crescent with high intensity formed in the nasal margin that drops off rapidly across the pupil. The normalization of the experimental maximum in (c) determines all other intensity levels.

Fig. 6
Fig. 6

Experimental versus theoretical predictions for +3 D (left) and −9 D (right) refractive states. These refractive states represent 6 D defocus in either direction from the camera placed 0.33 m from the eye. Solid curves, experimental profiles; long-dashed curves, predicted profiles with directionality; short-dashed curves, predicted profiles without directionality. The plots show that for the three cases the intensity profiles take a similar form. The defocus term is dominant, and the other aberrations have a small effect. (a) Unaided eye, (b) PA1 lens, (c) PS45 lens.

Fig. 7
Fig. 7

The directionality of the reflection is determined by the ratio of the intensity at the center of the pupil to the attenuation at the margins [see Eq. (4)]. A higher ratio indicates more directionality. The directionality was deduced from the experimental results and was highest for low refractive errors. The decrease in directionality for high refractive states may indicate some photoreceptor disarray during measurement over large spot sizes on the retina.

Fig. 8
Fig. 8

Computer-generated intensity profiles for a range of refractive states obtained by use of a temporal source, 1-mm eccentricity, and a 0.33-m working distance. The profile for each refractive state has been adjusted for the directionality of the reflection shown in Fig. 9. (a) Unaided eye: with low aberrations, the crescents take a traditional form. There is a dead zone around where the eye is focused on the camera, and crescent intensity increases are symmetric for the hyperopic and myopic regions, except that they originate in opposite margins of the pupil. (b) PA1 lens: the presence of aberration alters the symmetry of the intensity profiles, and the dead zone does not appear. (c) PS45 lens: again the presence of aberration alters the symmetry, and no dead zone occurs.

Fig. 9
Fig. 9

The baseline has been raised for the three cases. The surface plot represents the theoretical calculations. The predicted edges occur where the surface plots intersect the baseline, given by the solid curves. The points represent empirical measurements of the crescent edges. By raising the baseline, one obtains a good agreement of the experimental measurements with the predicted edges. We obtained the best correction by increasing the baseline by roughly 20% of the maximum intensity as shown.

Fig. 10
Fig. 10

Threshold-corrected crescent edges for a typical eccentric photorefraction measurement. Camera distance, 1.5 m; eccentricity, 25 mm; pupil size, 8 mm. The solid curves represent the expected crescent edges for a perfect detection system. The dashed curves represent the expected edges if the detection of the edge occurs at 30% of the maximum crescent intensity. The data from a previous study by Bobier9 (cyclopleged human eye, photographic photorefraction, using 400 ASA color film) fit the threshold-corrected curve.

Fig. 11
Fig. 11

Dependency of the intensity profiles on the source position for an eye with asymmetric aberrations. In this case the eye is modeled with primary coma along the horizontal meridian. When the source is temporal (solid curve) the result is a split crescent. For the nasal source (dashed curve) a central bright region is observed.

Fig. 12
Fig. 12

Two profiles from photorefraction images taken with the PA1 lens with (a) a temporal source and (b) a nasal source. Solid curves, experimental profiles; dashed curves, predicted profiles (with directionality). The peak in the center of the experimental profiles is the Purkinje image and can be ignored. The difference in the two profiles from the nasal and temporal sources indicates the effects of the asymmetric aberration induced by the PA1 lens.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k ( r ) = l [ 1 - t ( r ) r ] ,
x pr ( r ) = r · [ p + k ( r ) ] - k ( r ) ,
y ( r ) = x pr + r · [ p + k ( r ) ] - k ( r ) ,
I ( r ) = I 0 { 1 + exp [ - D ( r / r max ) 2 ] 2 } ,
t ( r ) = A 1 r 3 + A 2 r 5 + B 1 r 2 + B 2 r 4 + C r + Δ t ,

Metrics