Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Relation between the Rayleigh equation in diffraction theory and the equation based on Green’s formula

Not Accessible

Your library or personal account may give you access

Abstract

The steps necessary to produce the Rayleigh equation that is based on the Rayleigh hypothesis from the equation that is based on the Green’s formula are shown. First a definition is given for the scattering amplitude that is true not only in the far zone of diffraction but also near the scattering surface. With this definition the Rayleigh equation coincides with the rigorous equation for the surface secondary sources that is based on Green’s formula. The Rayleigh hypothesis is equivalent to substituting the far-zone expression of the scattering amplitude into this rigorous equation. In this case it turns out to be the equation not for the sources but directly for the scattering amplitude, which is the main advantage of this method. For comparing the Rayleigh equation with the initial rigorous equation, the Rayleigh equation is represented in terms of secondary sources. The kernel of this equation contains an integral that converges for positive and diverges for negative values of some parameter. It is shown that if we regularize this integral, defining it for the negative values of this parameter as an analytical continuation from the domain of positive values, this kernel becomes equal to the kernel of the initial rigorous equation. It follows that the formal perturbation series for the scattering amplitude obtained from the Rayleigh equation and from Green’s equation always coincide. This means that convergence of the perturbation series is a sufficient condition for the scattering amplitude obtained from the Rayleigh hypothesis to be true.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Limits of validity of three perturbation theories of the specular scattering of light from one-dimensional, randomly rough, dielectric surfaces

J. A. Sánchez-Gil, A. A. Maradudin, and E. R. Méndez
J. Opt. Soc. Am. A 12(7) 1547-1558 (1995)

Singularities and Rayleigh’s hypothesis for diffraction gratings

Joseph B. Keller
J. Opt. Soc. Am. A 17(3) 456-457 (2000)

New perturbation theory of diffraction gratings and its application to the study of ghosts

R. Dusséaux, C. Faure, J. Chandezon, and F. Molinet
J. Opt. Soc. Am. A 12(6) 1271-1282 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved