Abstract

Although turbulence is usually considered to be the primary cause of image blur, simultaneous and independent measurements of overall atmospheric modulation transfer function (MTF) and turbulence MTF over fairly long horizontal paths at 15-m average elevation indicate that, even at midday, aerosol MTF deriving from forward scatter is usually more dominant than turbulence MTF. Three different experimental techniques are used, two passive and one active. Aerosol MTF measurements are accompanied by actual meteorological and coarse aerosol size distributions and scattering parameters at the times of MTF measurements. The wavelength dependence of aerosol and therefore of overall atmospheric MTF can be significant. This wavelength dependence and a usually well-defined knee can in no way be due to turbulence but can be explained by a significant aerosol MTF deriving from typical aerosol size distributions representative of other climates as well. Measurements confirm that the narrower the open-atmosphere aerosol scattering patterns and the greater the scattering densities, the greater the degradations of aerosol MTF and, consequently, of overall atmospheric MTF. Results imply that system design and image-restoration algorithms based on atmospheric turbulence only may often lead to image quality that is much poorer than if aerosol MTF is considered, too, with its proper proportional effect on imaging through the atmosphere. Whereas adaptive optics cannot correct for aerosol-derived blur, digital image restoration can.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
    [CrossRef]
  2. D. L. Fried, “Optical resolution through a random medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966).
    [CrossRef]
  3. N. S. Kopeika, “Imaging through the atmosphere for airborne reconnaissance,” Opt. Eng. 26, 1146–1154 (1987).
    [CrossRef]
  4. R. F. Lutomirsky, “Atmospheric degradation of electrooptical system performance,” Appl. Opt. 17, 3915–3921 (1978).
    [CrossRef]
  5. A. Ishimaru, “Limitations on image resolution imposed by a random medium,” Appl. Opt. 17, 348–352 (1978).
    [CrossRef] [PubMed]
  6. D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function,” J. Opt. Soc. Am. A 10, 172–179 (1993).
    [CrossRef]
  7. E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).
    [CrossRef]
  8. L. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992).
    [CrossRef]
  9. D. Sadot, N. S. Kopeika, “Effects of absorption on image quality through a particulate medium,” Appl. Opt. 33, 7107–7111 (1994).
    [CrossRef] [PubMed]
  10. R. E. Hufnagel, N. R. Stanley, “Modulation transfer function through turbulent media,” J. Opt. Soc. Am. 54, 52–61 (1964).
    [CrossRef]
  11. I. Dror, N. S. Kopeika, “Aerosols and turbulence modulation transfer functions: comparison measurements in the open atmosphere,” Opt. Lett. 17, 1532–1534 (1992).
    [CrossRef] [PubMed]
  12. D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
    [CrossRef]
  13. N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of images propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
    [CrossRef]
  14. D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
    [CrossRef]
  15. J. Smith, U.S. Army Night Vision Laboratory, Fort Belvoir, Va. (personal communication, 1993).
  16. J. Gottlieb, B. Fugel, I. Dror, Z. Y. Offer, N. S. Kopeika, “Prediction of airborne particle statistics according to weather forecast: concentration and scattering area,” Opt. Eng. 34, 1208–1218 (1995).
    [CrossRef]
  17. I. Dror, N. S. Kopeika, “Prediction of particulate size distribution according to weather parameters,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1688, 123–131 (1992).
    [CrossRef]
  18. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 4.
  19. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986).
    [CrossRef]
  20. A. E. Marble, A. M. Zayezdany, “Adaptive numerical smoothing: an efficient method of conditioning physiological signals,” Med. Biol. Eng. Comput. 27, 171–180 (1989).
    [CrossRef] [PubMed]
  21. H. Raidt, D. H. Hohn, “Instantaneous intensity distribution in a focused laser beam at 0.63 μm and 10.6 μm propagating through the atmosphere,” Appl. Opt. 14, 2747–2749 (1975).
    [CrossRef] [PubMed]
  22. I. Dror, S. Atar, N. S. Kopeika, “Prediction of atmospheric extinction coefficient and comparison of transmission measurement methods: black target contrast vs. aerosol scattering calculations,” in Characterization, Propagation, and Simulation of Sources and Backgrounds III, W. R. Watkins, D. Clement, eds., Proc. Soc. Photo-Opt. In-strum. Eng.1967, 331–334 (1993).
    [CrossRef]
  23. W. E. K. Middelton, Vision through the Atmosphere (U. Toronto Press, Ontario, Canada, 1958).
  24. W. C. Malm, “Consideration in the accuracy of a long-path transmissometer,” Aerosol Sci. Technol. 14, 459–471 (1991).
    [CrossRef]
  25. R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, F. G. Smith, ed., Vol. 2 of the Infrared and Electrooptical Systems Handbook, J. S. Accetta, D. L. Shumaker, exec. eds. (ERIM, Ann Arbor, Mich., and Society of Photo Optical Instrumentation Engineers, Bellingham, Wash., 1993), p. 195.
  26. E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmback, R. L. Armstead, “Effects of turbulence on imaging through the atmosphere,” in Optical Properties of the Atmosphere, R. C. Sepucha, ed., Proc. Soc. Photo-Opt. Instrum. Eng.142, 130–134 (1978).
    [CrossRef]
  27. D. L. Fried, “Anisoplantism in adaptive optics,” J. Opt. Soc. Am. 72, 52–81 (1982).
    [CrossRef]
  28. N. S. Kopeika, S. Solomon, Y. Gencay, “Wavelength variation of visible and near-infrared resolution through the atmosphere: dependence on aerosol and meteorological conditions,” J. Opt. Soc. Am. 71, 892–901 (1981).
    [CrossRef]
  29. I. Dror, N. S. Kopeika, “Cutoffs of overall atmospheric MTF,” in Propagation Engineering: Fourth in a Series, L. Bissonnette, W. Miller, eds., Proc. Soc. Photo-Opt. In-strum. Eng.1487, 192–202 (1991).
    [CrossRef]
  30. Y. Kuga, A. Ishimaru, “Modulation transfer function and image transmission through randomly distributed spherical particles,” J. Opt. Soc. Am. A 2, 2330–2335 (1985).
    [CrossRef]
  31. P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
    [CrossRef]
  32. Y. J. Kim, H. Sievering, J. F. Boatman, “Airborne measurement of atmospheric aerosol particle in the lower troposphere over the central United States,” J. Geophys. Res. 93, 631–644 (1988).
    [CrossRef]
  33. N. S. Kopeika, D. Sadot, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: reply to comment,” J. Opt. Soc. Am. A 12, 1017–1023 (1995).
    [CrossRef]
  34. D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 482–498 (1994).
    [CrossRef]
  35. D. Sadot, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
    [CrossRef]
  36. D. Sadot, S. R. Rotman, N. S. Kopeika, “Comparison between high-resolution restoration techniques of atmospherically distorted images,” Opt. Eng. 34, 144–153 (1995).
    [CrossRef]
  37. D. Sadot, G. Lorman, R. Lapardon, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere using predicted atmospheric modulation transfer function,” Infrared Phys. Technol. 36, 565–576 (1995).
    [CrossRef]
  38. A. D. Sarma, R. J. Hill, “Effect of blowing snow and ground blizzards on millimeter wave scintillation spectra,” Int. J. Infrared Millimeter Waves 12, 997–10221991.
    [CrossRef]

1995 (4)

J. Gottlieb, B. Fugel, I. Dror, Z. Y. Offer, N. S. Kopeika, “Prediction of airborne particle statistics according to weather forecast: concentration and scattering area,” Opt. Eng. 34, 1208–1218 (1995).
[CrossRef]

D. Sadot, S. R. Rotman, N. S. Kopeika, “Comparison between high-resolution restoration techniques of atmospherically distorted images,” Opt. Eng. 34, 144–153 (1995).
[CrossRef]

D. Sadot, G. Lorman, R. Lapardon, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere using predicted atmospheric modulation transfer function,” Infrared Phys. Technol. 36, 565–576 (1995).
[CrossRef]

N. S. Kopeika, D. Sadot, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: reply to comment,” J. Opt. Soc. Am. A 12, 1017–1023 (1995).
[CrossRef]

1994 (5)

D. Sadot, N. S. Kopeika, “Effects of absorption on image quality through a particulate medium,” Appl. Opt. 33, 7107–7111 (1994).
[CrossRef] [PubMed]

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 482–498 (1994).
[CrossRef]

D. Sadot, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
[CrossRef]

D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
[CrossRef]

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

1993 (1)

1992 (3)

I. Dror, N. S. Kopeika, “Aerosols and turbulence modulation transfer functions: comparison measurements in the open atmosphere,” Opt. Lett. 17, 1532–1534 (1992).
[CrossRef] [PubMed]

L. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992).
[CrossRef]

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

1991 (3)

W. C. Malm, “Consideration in the accuracy of a long-path transmissometer,” Aerosol Sci. Technol. 14, 459–471 (1991).
[CrossRef]

A. D. Sarma, R. J. Hill, “Effect of blowing snow and ground blizzards on millimeter wave scintillation spectra,” Int. J. Infrared Millimeter Waves 12, 997–10221991.
[CrossRef]

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

1990 (1)

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of images propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

1989 (1)

A. E. Marble, A. M. Zayezdany, “Adaptive numerical smoothing: an efficient method of conditioning physiological signals,” Med. Biol. Eng. Comput. 27, 171–180 (1989).
[CrossRef] [PubMed]

1988 (1)

Y. J. Kim, H. Sievering, J. F. Boatman, “Airborne measurement of atmospheric aerosol particle in the lower troposphere over the central United States,” J. Geophys. Res. 93, 631–644 (1988).
[CrossRef]

1987 (1)

N. S. Kopeika, “Imaging through the atmosphere for airborne reconnaissance,” Opt. Eng. 26, 1146–1154 (1987).
[CrossRef]

1986 (1)

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986).
[CrossRef]

1985 (1)

1982 (1)

1981 (1)

1978 (2)

1975 (1)

1966 (1)

1964 (1)

Armstead, R. L.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmback, R. L. Armstead, “Effects of turbulence on imaging through the atmosphere,” in Optical Properties of the Atmosphere, R. C. Sepucha, ed., Proc. Soc. Photo-Opt. Instrum. Eng.142, 130–134 (1978).
[CrossRef]

Atar, S.

I. Dror, S. Atar, N. S. Kopeika, “Prediction of atmospheric extinction coefficient and comparison of transmission measurement methods: black target contrast vs. aerosol scattering calculations,” in Characterization, Propagation, and Simulation of Sources and Backgrounds III, W. R. Watkins, D. Clement, eds., Proc. Soc. Photo-Opt. In-strum. Eng.1967, 331–334 (1993).
[CrossRef]

Beland, R. R.

R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, F. G. Smith, ed., Vol. 2 of the Infrared and Electrooptical Systems Handbook, J. S. Accetta, D. L. Shumaker, exec. eds. (ERIM, Ann Arbor, Mich., and Society of Photo Optical Instrumentation Engineers, Bellingham, Wash., 1993), p. 195.

Bergel, I.

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

Bissonnette, L.

L. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992).
[CrossRef]

Boatman, J. F.

Y. J. Kim, H. Sievering, J. F. Boatman, “Airborne measurement of atmospheric aerosol particle in the lower troposphere over the central United States,” J. Geophys. Res. 93, 631–644 (1988).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 4.

Bruscaglioni, P.

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

Canny, J.

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986).
[CrossRef]

Cooper, A. W.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmback, R. L. Armstead, “Effects of turbulence on imaging through the atmosphere,” in Optical Properties of the Atmosphere, R. C. Sepucha, ed., Proc. Soc. Photo-Opt. Instrum. Eng.142, 130–134 (1978).
[CrossRef]

Crittenden, E. C.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmback, R. L. Armstead, “Effects of turbulence on imaging through the atmosphere,” in Optical Properties of the Atmosphere, R. C. Sepucha, ed., Proc. Soc. Photo-Opt. Instrum. Eng.142, 130–134 (1978).
[CrossRef]

Dinstein, I.

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of images propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

Dinur, N.

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 482–498 (1994).
[CrossRef]

Donelli, P.

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

Dror, I.

J. Gottlieb, B. Fugel, I. Dror, Z. Y. Offer, N. S. Kopeika, “Prediction of airborne particle statistics according to weather forecast: concentration and scattering area,” Opt. Eng. 34, 1208–1218 (1995).
[CrossRef]

I. Dror, N. S. Kopeika, “Aerosols and turbulence modulation transfer functions: comparison measurements in the open atmosphere,” Opt. Lett. 17, 1532–1534 (1992).
[CrossRef] [PubMed]

I. Dror, N. S. Kopeika, “Prediction of particulate size distribution according to weather parameters,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1688, 123–131 (1992).
[CrossRef]

I. Dror, N. S. Kopeika, “Cutoffs of overall atmospheric MTF,” in Propagation Engineering: Fourth in a Series, L. Bissonnette, W. Miller, eds., Proc. Soc. Photo-Opt. In-strum. Eng.1487, 192–202 (1991).
[CrossRef]

I. Dror, S. Atar, N. S. Kopeika, “Prediction of atmospheric extinction coefficient and comparison of transmission measurement methods: black target contrast vs. aerosol scattering calculations,” in Characterization, Propagation, and Simulation of Sources and Backgrounds III, W. R. Watkins, D. Clement, eds., Proc. Soc. Photo-Opt. In-strum. Eng.1967, 331–334 (1993).
[CrossRef]

Dvir, A.

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

Fried, D. L.

Fugel, B.

J. Gottlieb, B. Fugel, I. Dror, Z. Y. Offer, N. S. Kopeika, “Prediction of airborne particle statistics according to weather forecast: concentration and scattering area,” Opt. Eng. 34, 1208–1218 (1995).
[CrossRef]

Gencay, Y.

Gottlieb, J.

J. Gottlieb, B. Fugel, I. Dror, Z. Y. Offer, N. S. Kopeika, “Prediction of airborne particle statistics according to weather forecast: concentration and scattering area,” Opt. Eng. 34, 1208–1218 (1995).
[CrossRef]

Hill, R. J.

A. D. Sarma, R. J. Hill, “Effect of blowing snow and ground blizzards on millimeter wave scintillation spectra,” Int. J. Infrared Millimeter Waves 12, 997–10221991.
[CrossRef]

Hohn, D. H.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 4.

Hufnagel, R. E.

Ishimaru, A.

Ismaelli, A.

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

Israeli, R.

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of images propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

Ivanov, A. P.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).
[CrossRef]

Kalmback, S. H.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmback, R. L. Armstead, “Effects of turbulence on imaging through the atmosphere,” in Optical Properties of the Atmosphere, R. C. Sepucha, ed., Proc. Soc. Photo-Opt. Instrum. Eng.142, 130–134 (1978).
[CrossRef]

Katsev, I. L.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).
[CrossRef]

Kim, Y. J.

Y. J. Kim, H. Sievering, J. F. Boatman, “Airborne measurement of atmospheric aerosol particle in the lower troposphere over the central United States,” J. Geophys. Res. 93, 631–644 (1988).
[CrossRef]

Kogan, I.

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of images propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

Kopeika, N. S.

J. Gottlieb, B. Fugel, I. Dror, Z. Y. Offer, N. S. Kopeika, “Prediction of airborne particle statistics according to weather forecast: concentration and scattering area,” Opt. Eng. 34, 1208–1218 (1995).
[CrossRef]

D. Sadot, G. Lorman, R. Lapardon, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere using predicted atmospheric modulation transfer function,” Infrared Phys. Technol. 36, 565–576 (1995).
[CrossRef]

D. Sadot, S. R. Rotman, N. S. Kopeika, “Comparison between high-resolution restoration techniques of atmospherically distorted images,” Opt. Eng. 34, 144–153 (1995).
[CrossRef]

N. S. Kopeika, D. Sadot, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: reply to comment,” J. Opt. Soc. Am. A 12, 1017–1023 (1995).
[CrossRef]

D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
[CrossRef]

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

D. Sadot, N. S. Kopeika, “Effects of absorption on image quality through a particulate medium,” Appl. Opt. 33, 7107–7111 (1994).
[CrossRef] [PubMed]

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 482–498 (1994).
[CrossRef]

D. Sadot, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
[CrossRef]

D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function,” J. Opt. Soc. Am. A 10, 172–179 (1993).
[CrossRef]

I. Dror, N. S. Kopeika, “Aerosols and turbulence modulation transfer functions: comparison measurements in the open atmosphere,” Opt. Lett. 17, 1532–1534 (1992).
[CrossRef] [PubMed]

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of images propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

N. S. Kopeika, “Imaging through the atmosphere for airborne reconnaissance,” Opt. Eng. 26, 1146–1154 (1987).
[CrossRef]

N. S. Kopeika, S. Solomon, Y. Gencay, “Wavelength variation of visible and near-infrared resolution through the atmosphere: dependence on aerosol and meteorological conditions,” J. Opt. Soc. Am. 71, 892–901 (1981).
[CrossRef]

I. Dror, N. S. Kopeika, “Prediction of particulate size distribution according to weather parameters,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1688, 123–131 (1992).
[CrossRef]

I. Dror, N. S. Kopeika, “Cutoffs of overall atmospheric MTF,” in Propagation Engineering: Fourth in a Series, L. Bissonnette, W. Miller, eds., Proc. Soc. Photo-Opt. In-strum. Eng.1487, 192–202 (1991).
[CrossRef]

I. Dror, S. Atar, N. S. Kopeika, “Prediction of atmospheric extinction coefficient and comparison of transmission measurement methods: black target contrast vs. aerosol scattering calculations,” in Characterization, Propagation, and Simulation of Sources and Backgrounds III, W. R. Watkins, D. Clement, eds., Proc. Soc. Photo-Opt. In-strum. Eng.1967, 331–334 (1993).
[CrossRef]

Kuga, Y.

Lapardon, R.

D. Sadot, G. Lorman, R. Lapardon, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere using predicted atmospheric modulation transfer function,” Infrared Phys. Technol. 36, 565–576 (1995).
[CrossRef]

Lorman, G.

D. Sadot, G. Lorman, R. Lapardon, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere using predicted atmospheric modulation transfer function,” Infrared Phys. Technol. 36, 565–576 (1995).
[CrossRef]

Lutomirsky, R. F.

Malm, W. C.

W. C. Malm, “Consideration in the accuracy of a long-path transmissometer,” Aerosol Sci. Technol. 14, 459–471 (1991).
[CrossRef]

Marble, A. E.

A. E. Marble, A. M. Zayezdany, “Adaptive numerical smoothing: an efficient method of conditioning physiological signals,” Med. Biol. Eng. Comput. 27, 171–180 (1989).
[CrossRef] [PubMed]

Melamed, A.

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 482–498 (1994).
[CrossRef]

Middelton, W. E. K.

W. E. K. Middelton, Vision through the Atmosphere (U. Toronto Press, Ontario, Canada, 1958).

Milne, E. A.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmback, R. L. Armstead, “Effects of turbulence on imaging through the atmosphere,” in Optical Properties of the Atmosphere, R. C. Sepucha, ed., Proc. Soc. Photo-Opt. Instrum. Eng.142, 130–134 (1978).
[CrossRef]

Offer, Z. Y.

J. Gottlieb, B. Fugel, I. Dror, Z. Y. Offer, N. S. Kopeika, “Prediction of airborne particle statistics according to weather forecast: concentration and scattering area,” Opt. Eng. 34, 1208–1218 (1995).
[CrossRef]

Raidt, H.

Rodeback, G. W.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmback, R. L. Armstead, “Effects of turbulence on imaging through the atmosphere,” in Optical Properties of the Atmosphere, R. C. Sepucha, ed., Proc. Soc. Photo-Opt. Instrum. Eng.142, 130–134 (1978).
[CrossRef]

Rotman, S. R.

D. Sadot, S. R. Rotman, N. S. Kopeika, “Comparison between high-resolution restoration techniques of atmospherically distorted images,” Opt. Eng. 34, 144–153 (1995).
[CrossRef]

Sadot, D.

N. S. Kopeika, D. Sadot, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: reply to comment,” J. Opt. Soc. Am. A 12, 1017–1023 (1995).
[CrossRef]

D. Sadot, S. R. Rotman, N. S. Kopeika, “Comparison between high-resolution restoration techniques of atmospherically distorted images,” Opt. Eng. 34, 144–153 (1995).
[CrossRef]

D. Sadot, G. Lorman, R. Lapardon, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere using predicted atmospheric modulation transfer function,” Infrared Phys. Technol. 36, 565–576 (1995).
[CrossRef]

D. Sadot, N. S. Kopeika, “Effects of absorption on image quality through a particulate medium,” Appl. Opt. 33, 7107–7111 (1994).
[CrossRef] [PubMed]

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 482–498 (1994).
[CrossRef]

D. Sadot, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
[CrossRef]

D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
[CrossRef]

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function,” J. Opt. Soc. Am. A 10, 172–179 (1993).
[CrossRef]

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

Sarma, A. D.

A. D. Sarma, R. J. Hill, “Effect of blowing snow and ground blizzards on millimeter wave scintillation spectra,” Int. J. Infrared Millimeter Waves 12, 997–10221991.
[CrossRef]

Shemtov, D.

D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
[CrossRef]

Sievering, H.

Y. J. Kim, H. Sievering, J. F. Boatman, “Airborne measurement of atmospheric aerosol particle in the lower troposphere over the central United States,” J. Geophys. Res. 93, 631–644 (1988).
[CrossRef]

Smith, J.

J. Smith, U.S. Army Night Vision Laboratory, Fort Belvoir, Va. (personal communication, 1993).

Solomon, S.

Stanley, N. R.

Zaccanti, G.

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

Zayezdany, A. M.

A. E. Marble, A. M. Zayezdany, “Adaptive numerical smoothing: an efficient method of conditioning physiological signals,” Med. Biol. Eng. Comput. 27, 171–180 (1989).
[CrossRef] [PubMed]

Zege, E. P.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).
[CrossRef]

Aerosol Sci. Technol. (1)

W. C. Malm, “Consideration in the accuracy of a long-path transmissometer,” Aerosol Sci. Technol. 14, 459–471 (1991).
[CrossRef]

Appl. Opt. (4)

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986).
[CrossRef]

Infrared Phys. Technol. (1)

D. Sadot, G. Lorman, R. Lapardon, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere using predicted atmospheric modulation transfer function,” Infrared Phys. Technol. 36, 565–576 (1995).
[CrossRef]

Int. J. Infrared Millimeter Waves (1)

A. D. Sarma, R. J. Hill, “Effect of blowing snow and ground blizzards on millimeter wave scintillation spectra,” Int. J. Infrared Millimeter Waves 12, 997–10221991.
[CrossRef]

J. Geophys. Res. (1)

Y. J. Kim, H. Sievering, J. F. Boatman, “Airborne measurement of atmospheric aerosol particle in the lower troposphere over the central United States,” J. Geophys. Res. 93, 631–644 (1988).
[CrossRef]

J. Mod. Opt. (1)

P. Donelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of a turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (3)

Med. Biol. Eng. Comput. (1)

A. E. Marble, A. M. Zayezdany, “Adaptive numerical smoothing: an efficient method of conditioning physiological signals,” Med. Biol. Eng. Comput. 27, 171–180 (1989).
[CrossRef] [PubMed]

Opt. Eng. (8)

L. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992).
[CrossRef]

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, I. Dinstein, “Prediction of images propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).
[CrossRef]

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

N. S. Kopeika, “Imaging through the atmosphere for airborne reconnaissance,” Opt. Eng. 26, 1146–1154 (1987).
[CrossRef]

J. Gottlieb, B. Fugel, I. Dror, Z. Y. Offer, N. S. Kopeika, “Prediction of airborne particle statistics according to weather forecast: concentration and scattering area,” Opt. Eng. 34, 1208–1218 (1995).
[CrossRef]

D. Sadot, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
[CrossRef]

D. Sadot, S. R. Rotman, N. S. Kopeika, “Comparison between high-resolution restoration techniques of atmospherically distorted images,” Opt. Eng. 34, 144–153 (1995).
[CrossRef]

Opt. Lett. (1)

Waves Random Media (2)

D. Sadot, D. Shemtov, N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
[CrossRef]

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 482–498 (1994).
[CrossRef]

Other (9)

I. Dror, N. S. Kopeika, “Prediction of particulate size distribution according to weather parameters,” in Atmospheric Propagation and Remote Sensing, A. Kohnle, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1688, 123–131 (1992).
[CrossRef]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 4.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991).
[CrossRef]

J. Smith, U.S. Army Night Vision Laboratory, Fort Belvoir, Va. (personal communication, 1993).

I. Dror, S. Atar, N. S. Kopeika, “Prediction of atmospheric extinction coefficient and comparison of transmission measurement methods: black target contrast vs. aerosol scattering calculations,” in Characterization, Propagation, and Simulation of Sources and Backgrounds III, W. R. Watkins, D. Clement, eds., Proc. Soc. Photo-Opt. In-strum. Eng.1967, 331–334 (1993).
[CrossRef]

W. E. K. Middelton, Vision through the Atmosphere (U. Toronto Press, Ontario, Canada, 1958).

R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, F. G. Smith, ed., Vol. 2 of the Infrared and Electrooptical Systems Handbook, J. S. Accetta, D. L. Shumaker, exec. eds. (ERIM, Ann Arbor, Mich., and Society of Photo Optical Instrumentation Engineers, Bellingham, Wash., 1993), p. 195.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmback, R. L. Armstead, “Effects of turbulence on imaging through the atmosphere,” in Optical Properties of the Atmosphere, R. C. Sepucha, ed., Proc. Soc. Photo-Opt. Instrum. Eng.142, 130–134 (1978).
[CrossRef]

I. Dror, N. S. Kopeika, “Cutoffs of overall atmospheric MTF,” in Propagation Engineering: Fourth in a Series, L. Bissonnette, W. Miller, eds., Proc. Soc. Photo-Opt. In-strum. Eng.1487, 192–202 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Effects of aerosols, turbulence, and optics field of view on the image of the point object.

Fig. 2
Fig. 2

Simplified aerosol MTF (after Ref. 9).

Fig. 3
Fig. 3

Spectral response of the bar chart.

Fig. 4
Fig. 4

Imaging-system MTF for three different eyepieces.

Fig. 5
Fig. 5

Overall atmospheric (solid curves), turbulence (dotted curves), and aerosol (dashed curves) MTF’s measured July 16, 1991, at 7:03 am by observation of an edge through different high-pass wavelength filters. (a) λ > 280 nm, (b) λ > 530 nm, (c) λ > 715 nm. Aerosol MTF’s were obtained from the ratio of overall atmospheric MTF to turbulence MTF.

Fig. 6
Fig. 6

Measured coarse aerosol size distributions. For July 16 at 7:06 am, air temperature was 20 °C, relative humidity was 66%, wind speed was 1 m/s, wind direction was 50 °C, and solar flux was 0.3 kW/m2. For July 14 at midday the respective weather data were 33 °C, 39%, 5 m/s, 237 °C, and 0.95 kW/m2. For July 7 at 6:41 pm the respective weather data were 235 °C, 59%, 5 m/s, 220 °C, and 0.027 kW/m2.

Fig. 7
Fig. 7

Calculated scattering coefficients for coarse aerosols. Weather conditions as for Fig. 6.

Fig. 8
Fig. 8

Calculated specific-intensity functions with scattering coefficients for coarse and fine aerosols together for July 16 at 7:06 am. Weather conditions as for Fig. 6.

Fig. 9
Fig. 9

Same as Fig. 5 but for July 7 at 1:42 pm; (c) is for λ > 665 nm.

Fig. 10
Fig. 10

Calculated specific-intensity functions with scattering coefficients for coarse and fine aerosols together for July 7 at 1:42 pm.

Fig. 11
Fig. 11

Same as Fig. 5 but for July 7 at 6:41 pm.

Fig. 12
Fig. 12

Calculated specific-intensity functions with scattering coefficients for coarse and fine aerosols together for July 7 at 6:41 pm.

Fig. 13
Fig. 13

Overall atmospheric, turbulence, and aerosol MTF’s measured with a He–Ne laser (663-nm wavelength). (a) August 18, 1991, 9:35 am; (b) Aug. 13, 1991, 1:10 pm; (c) Aug. 14, 1991, 8:34 pm. Symbols for overall atmospheric, turbulence, and aerosol MTF’s as in Figs. 5, 9, and 11.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M A = M a M T ,
α x 2 2.92 D 1 / 3 0 L C n 2 ( z ) ( z L ) 5 / 3 d z , L 0 > D ( λ L ) 1 / 2 ,
M T = exp [ 57.53 Ω r 5 / 3 λ 1 / 3 0 z C n 2 ( z ) ( z L ) 5 / 3 d z ] ,
θ 0 = [ 2.19 k 2 s 8 / 3 ϕ 0 L C n 2 ( z ) z 5 / 3 d z ] 3 / 5 ,
θ 0 = ( 3 8 2.91 k 2 C n 2 L 8 / 3 d z ) 3 / 5 .

Metrics