G. Tayeb, “The method of fictitious sources applied to diffraction gratings,” Appl. Comput. Electromagn. Soc. J. 9, (3) 90–100 (1994).

Y. A. Eremin, N. V. Orlov, A. G. Sveshnikov, “Electromagnetic scattering analysis based on the discrete sources method,” Appl. Comput. Electromagn. Soc. J. 9, (3) 46–56 (1994).

A. G. Kyurkchan, A. I. Sukov, A. I. Kleev, “The methods for solving the problems of the diffraction of electromagnetic and acoustic waves using the information on analytical properties of the scattered fields,” Appl. Comput. Electromagn. Soc. J. 9, (3) 101–111 (1994).

R. Y-S. Tay, N. Kuster, “Performance of the generalized multipole technique (GMT/MMP) in antenna design and optimization,” Appl. Comput. Electromagn. Soc. J. 9, (3) 79–89 (1994).

P. Leuchtmann, “MMP modelling techniques with curved line multipoles,” Appl. Comput. Electromagn. Soc. J. 9, (3) 69–78 (1994).

Ch. Hafner, “On the design of numerical methods,” IEEE Antennas Propag. Mag. 35, (4), 13–21 (1993).

[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1106 (1981).

[CrossRef]

H. Singer, H. Steinbigler, P. Weiss, “A charge simulation method for the calculation of high-voltage fields,” IEEE Trans. Power Appar. Syst. 93, 1660–1668 (1974).

[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1106 (1981).

[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1106 (1981).

[CrossRef]

S. Bassiri, “Electromagnetic waves in chiral media,” in Recent Advances in Electromagnetic Theory, H. N. Kritikos, D. L. Jaggard, eds. (Springer, New York, 1990), pp. 1–30.

[CrossRef]

A. Boag, Y. Leviatan, A. Boag, “Analysis of diffraction from echelette gratings, using a strip-current model,” J. Opt. Soc. Am. A 6, 543–549 (1990).

[CrossRef]

A. Boag, Y. Leviatan, A. Boag, “Analysis of diffraction from echelette gratings, using a strip-current model,” J. Opt. Soc. Am. A 6, 543–549 (1990).

[CrossRef]

Ch. Hafner, L. Bomholt, The 3D Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993), Chaps. 2–13, pp. 9–84.

P. Leuchtmann, L. Bomholt, “Thin wire feature for the MMP-code,” in Proceedings of the Sixth Annual Review of Progress in Applied Computational Electromagnetics (Applied Computational Electromagnetics Society, Monterey, Calif., 1990), pp. 233–240.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1106 (1981).

[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1106 (1981).

[CrossRef]

Y. A. Eremin, N. V. Orlov, A. G. Sveshnikov, “Electromagnetic scattering analysis based on the discrete sources method,” Appl. Comput. Electromagn. Soc. J. 9, (3) 46–56 (1994).

Ch. Hafner, “On the design of numerical methods,” IEEE Antennas Propag. Mag. 35, (4), 13–21 (1993).

[CrossRef]

Ch. Hafner, “Beitraege zur Berechnung der Ausbreitung elektromagnetischer Wellen in zylindrischen Strukturen mit Hilfe des Point-Matching Verfahrens,” Ph.D. dissertation (Eidgenössische Technische Hochschule, Zurich, 1980).

Ch. Hafner, L. Bomholt, The 3D Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993), Chaps. 2–13, pp. 9–84.

Ch. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech, Boston, Mass., 1990), Chaps. 7–8, pp. 157–266.

Ch. Hafner, “Efficient MMP computation of periodic structures,”in Proceedings of the Tenth Annual Review of Progress in Applied Computational Electromagnetics (Applied Computational Electromagnetics Society, Monterey, Calif., 1994), pp. 303–310.

R. S. Zaridze, D. D. Karkashadze, “Calculation of regular waveguides by method of auxiliary sources” (Tbilisi State University, Tbilisi, Russia, 1985).

J. Li, S. Kiener, “On the solution of periodical structures with GMT,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 610–613.

A. G. Kyurkchan, A. I. Sukov, A. I. Kleev, “The methods for solving the problems of the diffraction of electromagnetic and acoustic waves using the information on analytical properties of the scattered fields,” Appl. Comput. Electromagn. Soc. J. 9, (3) 101–111 (1994).

R. Y-S. Tay, N. Kuster, “Performance of the generalized multipole technique (GMT/MMP) in antenna design and optimization,” Appl. Comput. Electromagn. Soc. J. 9, (3) 79–89 (1994).

A. G. Kyurkchan, A. I. Sukov, A. I. Kleev, “The methods for solving the problems of the diffraction of electromagnetic and acoustic waves using the information on analytical properties of the scattered fields,” Appl. Comput. Electromagn. Soc. J. 9, (3) 101–111 (1994).

P. Leuchtmann, “MMP modelling techniques with curved line multipoles,” Appl. Comput. Electromagn. Soc. J. 9, (3) 69–78 (1994).

P. Leuchtmann, L. Bomholt, “Thin wire feature for the MMP-code,” in Proceedings of the Sixth Annual Review of Progress in Applied Computational Electromagnetics (Applied Computational Electromagnetics Society, Monterey, Calif., 1990), pp. 233–240.

J. Li, S. Kiener, “On the solution of periodical structures with GMT,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 610–613.

J. Li, “GMT and MMP applied to the computation of general periodic structures,” Ph.D. dissertation (Eidgenössische Technische Hochschule, Zurich, 1993).

J. Lochbihler, “Eine theoretische und experimentelle Untersuchung von hochleitenden Drahtgittern im Resonanzbreich,” Ph.D. dissertation (Technische Universitat München, Munich, 1993).

A. Ludwig, “A new technique for numerical electromagnetics,” IEEE Antennas and Propagation Society Newsletter 31 (Institute of Electrical and Electronics Engineers, New York, 1989).

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1106 (1981).

[CrossRef]

Y. A. Eremin, N. V. Orlov, A. G. Sveshnikov, “Electromagnetic scattering analysis based on the discrete sources method,” Appl. Comput. Electromagn. Soc. J. 9, (3) 46–56 (1994).

P. Regli, “Automatische Wahl der sphaerischen Entwicklungsfunktionen fuer die 3D-MMP Methode,” Ph.D. dissertation (Eidgenössische Technische Hochschule, Zurich, 1992).

H. Singer, H. Steinbigler, P. Weiss, “A charge simulation method for the calculation of high-voltage fields,” IEEE Trans. Power Appar. Syst. 93, 1660–1668 (1974).

[CrossRef]

H. Singer, H. Steinbigler, P. Weiss, “A charge simulation method for the calculation of high-voltage fields,” IEEE Trans. Power Appar. Syst. 93, 1660–1668 (1974).

[CrossRef]

A. G. Kyurkchan, A. I. Sukov, A. I. Kleev, “The methods for solving the problems of the diffraction of electromagnetic and acoustic waves using the information on analytical properties of the scattered fields,” Appl. Comput. Electromagn. Soc. J. 9, (3) 101–111 (1994).

Y. A. Eremin, N. V. Orlov, A. G. Sveshnikov, “Electromagnetic scattering analysis based on the discrete sources method,” Appl. Comput. Electromagn. Soc. J. 9, (3) 46–56 (1994).

R. Y-S. Tay, N. Kuster, “Performance of the generalized multipole technique (GMT/MMP) in antenna design and optimization,” Appl. Comput. Electromagn. Soc. J. 9, (3) 79–89 (1994).

G. Tayeb, “The method of fictitious sources applied to diffraction gratings,” Appl. Comput. Electromagn. Soc. J. 9, (3) 90–100 (1994).

I. N. Vekua, New Methods for Solving Elliptic Equations (North-Holland, Amsterdam, 1967), Chap. 2, pp. 103–110.

H. Singer, H. Steinbigler, P. Weiss, “A charge simulation method for the calculation of high-voltage fields,” IEEE Trans. Power Appar. Syst. 93, 1660–1668 (1974).

[CrossRef]

R. S. Zaridze, D. D. Karkashadze, “Calculation of regular waveguides by method of auxiliary sources” (Tbilisi State University, Tbilisi, Russia, 1985).

G. Tayeb, “The method of fictitious sources applied to diffraction gratings,” Appl. Comput. Electromagn. Soc. J. 9, (3) 90–100 (1994).

Y. A. Eremin, N. V. Orlov, A. G. Sveshnikov, “Electromagnetic scattering analysis based on the discrete sources method,” Appl. Comput. Electromagn. Soc. J. 9, (3) 46–56 (1994).

A. G. Kyurkchan, A. I. Sukov, A. I. Kleev, “The methods for solving the problems of the diffraction of electromagnetic and acoustic waves using the information on analytical properties of the scattered fields,” Appl. Comput. Electromagn. Soc. J. 9, (3) 101–111 (1994).

R. Y-S. Tay, N. Kuster, “Performance of the generalized multipole technique (GMT/MMP) in antenna design and optimization,” Appl. Comput. Electromagn. Soc. J. 9, (3) 79–89 (1994).

P. Leuchtmann, “MMP modelling techniques with curved line multipoles,” Appl. Comput. Electromagn. Soc. J. 9, (3) 69–78 (1994).

Ch. Hafner, “On the design of numerical methods,” IEEE Antennas Propag. Mag. 35, (4), 13–21 (1993).

[CrossRef]

H. Singer, H. Steinbigler, P. Weiss, “A charge simulation method for the calculation of high-voltage fields,” IEEE Trans. Power Appar. Syst. 93, 1660–1668 (1974).

[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1106 (1981).

[CrossRef]

S. Bassiri, “Electromagnetic waves in chiral media,” in Recent Advances in Electromagnetic Theory, H. N. Kritikos, D. L. Jaggard, eds. (Springer, New York, 1990), pp. 1–30.

[CrossRef]

P. Regli, “Automatische Wahl der sphaerischen Entwicklungsfunktionen fuer die 3D-MMP Methode,” Ph.D. dissertation (Eidgenössische Technische Hochschule, Zurich, 1992).

P. Leuchtmann, L. Bomholt, “Thin wire feature for the MMP-code,” in Proceedings of the Sixth Annual Review of Progress in Applied Computational Electromagnetics (Applied Computational Electromagnetics Society, Monterey, Calif., 1990), pp. 233–240.

I. N. Vekua, New Methods for Solving Elliptic Equations (North-Holland, Amsterdam, 1967), Chap. 2, pp. 103–110.

J. Lochbihler, “Eine theoretische und experimentelle Untersuchung von hochleitenden Drahtgittern im Resonanzbreich,” Ph.D. dissertation (Technische Universitat München, Munich, 1993).

Ch. Hafner, “Efficient MMP computation of periodic structures,”in Proceedings of the Tenth Annual Review of Progress in Applied Computational Electromagnetics (Applied Computational Electromagnetics Society, Monterey, Calif., 1994), pp. 303–310.

J. Li, S. Kiener, “On the solution of periodical structures with GMT,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 610–613.

J. Li, “GMT and MMP applied to the computation of general periodic structures,” Ph.D. dissertation (Eidgenössische Technische Hochschule, Zurich, 1993).

Ch. Hafner, “Beitraege zur Berechnung der Ausbreitung elektromagnetischer Wellen in zylindrischen Strukturen mit Hilfe des Point-Matching Verfahrens,” Ph.D. dissertation (Eidgenössische Technische Hochschule, Zurich, 1980).

A. Ludwig, “A new technique for numerical electromagnetics,” IEEE Antennas and Propagation Society Newsletter 31 (Institute of Electrical and Electronics Engineers, New York, 1989).

R. S. Zaridze, D. D. Karkashadze, “Calculation of regular waveguides by method of auxiliary sources” (Tbilisi State University, Tbilisi, Russia, 1985).

Ch. Hafner, L. Bomholt, The 3D Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993), Chaps. 2–13, pp. 9–84.

Ch. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech, Boston, Mass., 1990), Chaps. 7–8, pp. 157–266.