Abstract

We propose an optical method to characterize tips used in scanning near-field optical microscopy (SNOM). The tip is a nanosource, and its optical emission is studied by an inverted scanning tunneling optical microscopy (also called photon scanning tunneling microscopy) apparatus. Then we can obtain information about the spatial Fourier spectrum of the source. We give the formulas connecting the detected intensity to the properties of the nanosource and to geometric parameters of the apparatus. Our discussion is illustrated by a simple approximation for the nanosource: the Bethe–Bouwkamp model.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  2. D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
    [CrossRef]
  3. D. W. Pohl, D. Courjon, eds., Near Field Optics, NATO Advanced Scientific Institutes Series E, Vol. 242 (Kluwer, Dordrecht, The Netherlands, 1993).
    [CrossRef]
  4. R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
    [CrossRef]
  5. D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
    [CrossRef]
  6. F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo. Opt. Instrum. Eng.1139, 77–84 (1984).
    [CrossRef]
  7. R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and implementation of a low temperature nearfield scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
    [CrossRef]
  8. T. D. Harris, R. D. Grober, J. K. Trautman, E. Betzig, “Super-resolution imaging spectroscopy,” Appl. Spectrosc. 48, 14A–21A (1994).
    [CrossRef]
  9. B. Hetch, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both world?,” Ultramicroscopy (to be published).
  10. U. Ch. Fischer, M. Zapletal, “The concept of the coaxial tip as a probe for scanning near field optical microscopy and steps towards a realization,” Ultramicroscopy 42–44, 393–398 (1991).
  11. K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
    [CrossRef] [PubMed]
  12. H. U. Danzelbrink, U. C. Fischer, “The concept of an optoelectronic probe for near-field microscopy,” in Ref. 3, pp. 303–308.
  13. E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Applied Phys. Lett. 63, 3550–3552 (1993).
    [CrossRef]
  14. F. Baida, D. Courjon, G. Tribillon, “combination of a fiber and a silicon nitride tip as a bifunctional detector: first results and perspectives,” in Ref. 3, pp. 71–78.
  15. M. H. P. Moers, R. G. Tack, O. F. J. Noordman, F. B. Segerink, N. F. Van Hulst, B. Böoumllger, “Combined photon scanning tunneling microscope and atomic force microscope using silicon nitride probes,” in Ref. 3, pp. 79–86.
  16. M. Spajer, A. Jalocha, “The reflection near-field optical microscope: an alternative to STOM,” in Ref. 3, pp. 87–96.
  17. D. C. Champeney, Fourier Transforms and Their Applications (Academic, London, 1973), Chap. 3.
  18. J. J. Stamnes, Waves in Focal Regions (Hilger, Bristol, UK, 1986).
  19. G. C. Sherman, J. J. Stamnes, E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760–776 (1976).
    [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics2nd ed. (Wiley, New York, 1975), Sec. 9.12.
  21. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  22. C. J. Bouwkamp, “Diffraction theory,” Rep. Phys. 27, 35–100 (1954).
    [CrossRef]
  23. A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick perfectly conducting screen,” J. Opt. Am. Soc. A 4, 1970–1983 (1987).
    [CrossRef]
  24. A. Roberts, “Small hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1992).
    [CrossRef]
  25. O. Martin, A. Dereux, Ch. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary forms,” J. Opt. Soc. Am A 11, 1073–1080 (1994).
    [CrossRef]
  26. A. Castiaux, A. Dereux, J. P. Vigneron, “Electromagnetic fields in two-dimensional models of near-field optical microscope tips,” Ultramicroscopy (to be published).
  27. L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
    [CrossRef]
  28. A. T. Harootunian, “Near-field scanning optical microscopy and Raman microscopy,” Ph.D. thesis (Cornell University, Ithaca, N.Y.) and references therein.
  29. D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
    [CrossRef]
  30. D. Barchiesi, D. Van Labeke, “Scanning tunneling optical microscopy (STOM). Theoretical study of polarization effects with two models of tip,” in Ref. 3, pp. 179–188.
  31. J. C. Stover, Optical Scattering Measurement and Analysis (McGraw-Hill, New York, 1990), Chap. 1.
  32. D. Barchiesi, D. Van Labeke, “A perturbative diffraction theory of a multilayer system: application to near-field microscopy SNOM and STOM,” Ultramicroscopy (to be published).

1994 (4)

O. Martin, A. Dereux, Ch. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary forms,” J. Opt. Soc. Am A 11, 1073–1080 (1994).
[CrossRef]

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and implementation of a low temperature nearfield scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
[CrossRef]

T. D. Harris, R. D. Grober, J. K. Trautman, E. Betzig, “Super-resolution imaging spectroscopy,” Appl. Spectrosc. 48, 14A–21A (1994).
[CrossRef]

1993 (2)

D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
[CrossRef]

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Applied Phys. Lett. 63, 3550–3552 (1993).
[CrossRef]

1992 (2)

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
[CrossRef]

A. Roberts, “Small hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1992).
[CrossRef]

1991 (2)

U. Ch. Fischer, M. Zapletal, “The concept of the coaxial tip as a probe for scanning near field optical microscopy and steps towards a realization,” Ultramicroscopy 42–44, 393–398 (1991).

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

1990 (1)

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

1989 (2)

R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

1987 (1)

A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick perfectly conducting screen,” J. Opt. Am. Soc. A 4, 1970–1983 (1987).
[CrossRef]

1976 (1)

G. C. Sherman, J. J. Stamnes, E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760–776 (1976).
[CrossRef]

1954 (1)

C. J. Bouwkamp, “Diffraction theory,” Rep. Phys. 27, 35–100 (1954).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Baida, F.

F. Baida, D. Courjon, G. Tribillon, “combination of a fiber and a silicon nitride tip as a bifunctional detector: first results and perspectives,” in Ref. 3, pp. 71–78.

Bainier, C.

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
[CrossRef]

Barchiesi, D.

D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
[CrossRef]

D. Barchiesi, D. Van Labeke, “A perturbative diffraction theory of a multilayer system: application to near-field microscopy SNOM and STOM,” Ultramicroscopy (to be published).

D. Barchiesi, D. Van Labeke, “Scanning tunneling optical microscopy (STOM). Theoretical study of polarization effects with two models of tip,” in Ref. 3, pp. 179–188.

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Betzig, E.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and implementation of a low temperature nearfield scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

T. D. Harris, R. D. Grober, J. K. Trautman, E. Betzig, “Super-resolution imaging spectroscopy,” Appl. Spectrosc. 48, 14A–21A (1994).
[CrossRef]

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Applied Phys. Lett. 63, 3550–3552 (1993).
[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Böoumllger, B.

M. H. P. Moers, R. G. Tack, O. F. J. Noordman, F. B. Segerink, N. F. Van Hulst, B. Böoumllger, “Combined photon scanning tunneling microscope and atomic force microscope using silicon nitride probes,” in Ref. 3, pp. 79–86.

Bouwkamp, C. J.

C. J. Bouwkamp, “Diffraction theory,” Rep. Phys. 27, 35–100 (1954).
[CrossRef]

Castiaux, A.

A. Castiaux, A. Dereux, J. P. Vigneron, “Electromagnetic fields in two-dimensional models of near-field optical microscope tips,” Ultramicroscopy (to be published).

Champeney, D. C.

D. C. Champeney, Fourier Transforms and Their Applications (Academic, London, 1973), Chap. 3.

Chichester, R. J.

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Applied Phys. Lett. 63, 3550–3552 (1993).
[CrossRef]

Courjon, D.

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
[CrossRef]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

F. Baida, D. Courjon, G. Tribillon, “combination of a fiber and a silicon nitride tip as a bifunctional detector: first results and perspectives,” in Ref. 3, pp. 71–78.

Danzelbrink, H. U.

H. U. Danzelbrink, U. C. Fischer, “The concept of an optoelectronic probe for near-field microscopy,” in Ref. 3, pp. 303–308.

de Fornel, F.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo. Opt. Instrum. Eng.1139, 77–84 (1984).
[CrossRef]

Dereux, A.

O. Martin, A. Dereux, Ch. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary forms,” J. Opt. Soc. Am A 11, 1073–1080 (1994).
[CrossRef]

A. Castiaux, A. Dereux, J. P. Vigneron, “Electromagnetic fields in two-dimensional models of near-field optical microscope tips,” Ultramicroscopy (to be published).

DiGiovanni, D. J.

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Applied Phys. Lett. 63, 3550–3552 (1993).
[CrossRef]

Ferrel, T. L.

R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Fischer, U. C.

H. U. Danzelbrink, U. C. Fischer, “The concept of an optoelectronic probe for near-field microscopy,” in Ref. 3, pp. 303–308.

Fischer, U. Ch.

U. Ch. Fischer, M. Zapletal, “The concept of the coaxial tip as a probe for scanning near field optical microscopy and steps towards a realization,” Ultramicroscopy 42–44, 393–398 (1991).

Girard, Ch.

O. Martin, A. Dereux, Ch. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary forms,” J. Opt. Soc. Am A 11, 1073–1080 (1994).
[CrossRef]

Goudonnet, J. P.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo. Opt. Instrum. Eng.1139, 77–84 (1984).
[CrossRef]

Grober, R. D.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and implementation of a low temperature nearfield scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

T. D. Harris, R. D. Grober, J. K. Trautman, E. Betzig, “Super-resolution imaging spectroscopy,” Appl. Spectrosc. 48, 14A–21A (1994).
[CrossRef]

Grubb, S. G.

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Applied Phys. Lett. 63, 3550–3552 (1993).
[CrossRef]

Harootunian, A. T.

A. T. Harootunian, “Near-field scanning optical microscopy and Raman microscopy,” Ph.D. thesis (Cornell University, Ithaca, N.Y.) and references therein.

Harris, T. D.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and implementation of a low temperature nearfield scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

T. D. Harris, R. D. Grober, J. K. Trautman, E. Betzig, “Super-resolution imaging spectroscopy,” Appl. Spectrosc. 48, 14A–21A (1994).
[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Harush, S.

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

Heinzelmann, H.

B. Hetch, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both world?,” Ultramicroscopy (to be published).

Hetch, B.

B. Hetch, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both world?,” Ultramicroscopy (to be published).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics2nd ed. (Wiley, New York, 1975), Sec. 9.12.

Jalocha, A.

M. Spajer, A. Jalocha, “The reflection near-field optical microscope: an alternative to STOM,” in Ref. 3, pp. 87–96.

Kopelman, R.

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

Kostelar, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Lalor, E.

G. C. Sherman, J. J. Stamnes, E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760–776 (1976).
[CrossRef]

Lesniewska, E.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo. Opt. Instrum. Eng.1139, 77–84 (1984).
[CrossRef]

Lewis, A.

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

Lieberman, K.

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

Martin, O.

O. Martin, A. Dereux, Ch. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary forms,” J. Opt. Soc. Am A 11, 1073–1080 (1994).
[CrossRef]

Moers, M. H. P.

M. H. P. Moers, R. G. Tack, O. F. J. Noordman, F. B. Segerink, N. F. Van Hulst, B. Böoumllger, “Combined photon scanning tunneling microscope and atomic force microscope using silicon nitride probes,” in Ref. 3, pp. 79–86.

Noordman, O. F. J.

M. H. P. Moers, R. G. Tack, O. F. J. Noordman, F. B. Segerink, N. F. Van Hulst, B. Böoumllger, “Combined photon scanning tunneling microscope and atomic force microscope using silicon nitride probes,” in Ref. 3, pp. 79–86.

Novotny, L.

Pohl, D. W.

Reddick, R. C.

R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Regli, P.

Roberts, A.

A. Roberts, “Small hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1992).
[CrossRef]

A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick perfectly conducting screen,” J. Opt. Am. Soc. A 4, 1970–1983 (1987).
[CrossRef]

Salomon, L.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo. Opt. Instrum. Eng.1139, 77–84 (1984).
[CrossRef]

Sarayeddine, K.

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Segerink, F. B.

M. H. P. Moers, R. G. Tack, O. F. J. Noordman, F. B. Segerink, N. F. Van Hulst, B. Böoumllger, “Combined photon scanning tunneling microscope and atomic force microscope using silicon nitride probes,” in Ref. 3, pp. 79–86.

Sherman, G. C.

G. C. Sherman, J. J. Stamnes, E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760–776 (1976).
[CrossRef]

Spajer, M.

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
[CrossRef]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

M. Spajer, A. Jalocha, “The reflection near-field optical microscope: an alternative to STOM,” in Ref. 3, pp. 87–96.

Stamnes, J. J.

G. C. Sherman, J. J. Stamnes, E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760–776 (1976).
[CrossRef]

J. J. Stamnes, Waves in Focal Regions (Hilger, Bristol, UK, 1986).

Stover, J. C.

J. C. Stover, Optical Scattering Measurement and Analysis (McGraw-Hill, New York, 1990), Chap. 1.

Tack, R. G.

M. H. P. Moers, R. G. Tack, O. F. J. Noordman, F. B. Segerink, N. F. Van Hulst, B. Böoumllger, “Combined photon scanning tunneling microscope and atomic force microscope using silicon nitride probes,” in Ref. 3, pp. 79–86.

Trautman, J. K.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and implementation of a low temperature nearfield scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

T. D. Harris, R. D. Grober, J. K. Trautman, E. Betzig, “Super-resolution imaging spectroscopy,” Appl. Spectrosc. 48, 14A–21A (1994).
[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Tribillon, G.

F. Baida, D. Courjon, G. Tribillon, “combination of a fiber and a silicon nitride tip as a bifunctional detector: first results and perspectives,” in Ref. 3, pp. 71–78.

Van Hulst, N. F.

M. H. P. Moers, R. G. Tack, O. F. J. Noordman, F. B. Segerink, N. F. Van Hulst, B. Böoumllger, “Combined photon scanning tunneling microscope and atomic force microscope using silicon nitride probes,” in Ref. 3, pp. 79–86.

Van Labeke, D.

D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
[CrossRef]

D. Barchiesi, D. Van Labeke, “Scanning tunneling optical microscopy (STOM). Theoretical study of polarization effects with two models of tip,” in Ref. 3, pp. 179–188.

D. Barchiesi, D. Van Labeke, “A perturbative diffraction theory of a multilayer system: application to near-field microscopy SNOM and STOM,” Ultramicroscopy (to be published).

Vigneron, J. P.

A. Castiaux, A. Dereux, J. P. Vigneron, “Electromagnetic fields in two-dimensional models of near-field optical microscope tips,” Ultramicroscopy (to be published).

Warmack, R. J.

R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Weiner, J. S.

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Applied Phys. Lett. 63, 3550–3552 (1993).
[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Zapletal, M.

U. Ch. Fischer, M. Zapletal, “The concept of the coaxial tip as a probe for scanning near field optical microscopy and steps towards a realization,” Ultramicroscopy 42–44, 393–398 (1991).

Appl. Spectrosc. (1)

Applied Phys. Lett. (1)

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Applied Phys. Lett. 63, 3550–3552 (1993).
[CrossRef]

J. Appl. Phys. (1)

A. Roberts, “Small hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1992).
[CrossRef]

J. Math. Phys. (1)

G. C. Sherman, J. J. Stamnes, E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760–776 (1976).
[CrossRef]

J. Opt. Am. Soc. A (1)

A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick perfectly conducting screen,” J. Opt. Am. Soc. A 4, 1970–1983 (1987).
[CrossRef]

J. Opt. Soc. Am A (1)

O. Martin, A. Dereux, Ch. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary forms,” J. Opt. Soc. Am A 11, 1073–1080 (1994).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (1)

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
[CrossRef]

Opt. Commun. (1)

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. B (1)

R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Rep. Phys. (1)

C. J. Bouwkamp, “Diffraction theory,” Rep. Phys. 27, 35–100 (1954).
[CrossRef]

Rev. Sci. Instrum. (1)

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and implementation of a low temperature nearfield scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

Science (2)

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Ultramicroscopy (1)

U. Ch. Fischer, M. Zapletal, “The concept of the coaxial tip as a probe for scanning near field optical microscopy and steps towards a realization,” Ultramicroscopy 42–44, 393–398 (1991).

Other (15)

H. U. Danzelbrink, U. C. Fischer, “The concept of an optoelectronic probe for near-field microscopy,” in Ref. 3, pp. 303–308.

F. Baida, D. Courjon, G. Tribillon, “combination of a fiber and a silicon nitride tip as a bifunctional detector: first results and perspectives,” in Ref. 3, pp. 71–78.

M. H. P. Moers, R. G. Tack, O. F. J. Noordman, F. B. Segerink, N. F. Van Hulst, B. Böoumllger, “Combined photon scanning tunneling microscope and atomic force microscope using silicon nitride probes,” in Ref. 3, pp. 79–86.

M. Spajer, A. Jalocha, “The reflection near-field optical microscope: an alternative to STOM,” in Ref. 3, pp. 87–96.

D. C. Champeney, Fourier Transforms and Their Applications (Academic, London, 1973), Chap. 3.

J. J. Stamnes, Waves in Focal Regions (Hilger, Bristol, UK, 1986).

D. W. Pohl, D. Courjon, eds., Near Field Optics, NATO Advanced Scientific Institutes Series E, Vol. 242 (Kluwer, Dordrecht, The Netherlands, 1993).
[CrossRef]

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo. Opt. Instrum. Eng.1139, 77–84 (1984).
[CrossRef]

B. Hetch, H. Heinzelmann, D. W. Pohl, “Combined aperture SNOM/PSTM: best of both world?,” Ultramicroscopy (to be published).

J. D. Jackson, Classical Electrodynamics2nd ed. (Wiley, New York, 1975), Sec. 9.12.

A. T. Harootunian, “Near-field scanning optical microscopy and Raman microscopy,” Ph.D. thesis (Cornell University, Ithaca, N.Y.) and references therein.

A. Castiaux, A. Dereux, J. P. Vigneron, “Electromagnetic fields in two-dimensional models of near-field optical microscope tips,” Ultramicroscopy (to be published).

D. Barchiesi, D. Van Labeke, “Scanning tunneling optical microscopy (STOM). Theoretical study of polarization effects with two models of tip,” in Ref. 3, pp. 179–188.

J. C. Stover, Optical Scattering Measurement and Analysis (McGraw-Hill, New York, 1990), Chap. 1.

D. Barchiesi, D. Van Labeke, “A perturbative diffraction theory of a multilayer system: application to near-field microscopy SNOM and STOM,” Ultramicroscopy (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the apparatus proposed for optical characterization of the nanosources, showing coordinates and various parameters used in the calculations. The origin of the coordinates is the center of the plane face of the hemispherical lens. The direction of detection is marked by angles θD and ψD. A polarizer can be put in front of the detector, its direction indicated by ϕD measured from the plane (OzOD).

Fig. 2
Fig. 2

Monodimensional variations of the modulus of transfer matrix coefficients for an air–glass diopter. Index of glass n = 1.85; k0 = 2π/λ, where λ is the vacuum wavelength. (a) | T x x ( u , υ = 0 ) |, (b) | T y y ( u , υ = 0 ) |.

Fig. 3
Fig. 3

Two-dimensional variations of transfer matrix coefficients for an air–glass diopter. Index of glass n = 1.85; k0 = 2π/λ, where λ is the vacuum wavelength. (a) | T x x ( u , υ ) |, (b) | T x y ( u , υ ) |.

Fig. 4
Fig. 4

Spatial Fourier spectrum of the field emitted by a Bethe–Boukamp aperture of radius a in a thin perfect metal. 0(k) = (−8ik0a3Ei)/30(k). The incident field arrives along the z axis and is polarized along the x axis; its amplitude is Ei. (a) [ℱ0(u,υ]x versus k/a, (b) [ℱ0(u,υ)]y versus k/a.

Fig. 5
Fig. 5

Influence of aperture radius on the spatial Fourier spectrum of the field emitted by a Bethe–Boukamp aperture of radius a in a thin perfect metal. 0(k) = (−8ik0a3Ei)/30(k). The incident field arrives along the z axis and is polarized along the x axis; its amplitude is Ei. (0)x is studied for υ/k0 = 0 and versus u/k0. (0)y is studied for υ/k0 = 1 and versus u/k0. (a) [0(u,υ = 0)]x versus u/k0, (b) [0(u,υ/k0 = 1)]y versus u/k0.

Fig. 6
Fig. 6

Influence of aperture radius, of tip distance, and of polarization on BDC variations. Incident wavelength λ = 600 nm; index of the hemisphere n = 1.85. (a) Aperture radius a = 20 nm, detection in the xz plane (ψ = 0), TM polarization (ϕ = π/2); (b) aperture radius a = 200 nm, detection in the xz plane (ψ = 0), TM polarization (ϕ = π/2); (c) aperture radius a = 20 nm, detection in the yz plane (ψ = 90°), TE polarization (ϕ = 0); (d) aperture radius a = 200 nm, detection in the yz plane (ψ = 90°), TE polarization (ϕ = 0).

Fig. 7
Fig. 7

Variations of the BDC coefficient versus angles θD and ψD for two polarizations. Incident wavelength λ = 600 nm; index of the hemisphere n = 1.85; aperture radius a = 20 nm; tip surface distance zT = 10 nm. (a) TE polarization (ϕD = 0), (b) TM polarization (ϕD = π/2).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

F ( r ) = 1 4 π 2 ( k ) exp ( + i k r ) d k , ( k ) = F ( r ) exp ( i k r ) d r ,
E 0 ( k ) = E 0 ( r ) exp ( i k r ) d r .
E 1 ( R ; R T ) = 1 4 π 2 × E 0 ( k ) exp [ + i k · ( r r T ) + i | z z T | w 1 ( k ) ] d k ,
w 1 ( k ) = ω 2 / c 2 k 2 .
E 1 ( k ) = E 0 ( k ) exp ( i k r T ) exp [ + i | z z T | w 1 ( k ) ] .
u E 0 ( k ) x + υ E 0 ( k ) y + w 1 ( k ) E 0 ( k ) z = 0 .
R D = ( x D , y D , z D ) = [ R D sin ( θ D ) cos ( ψ D ) , R D sin ( θ D ) sin ( ψ D ) , R D cos ( θ D ) ] .
P D = { sin ( ψ D ) cos ( ϕ D ) cos ( ψ D ) cos ( θ D ) sin ( ϕ D ) cos ( ψ D ) cos ( ϕ D ) sin ( ψ D ) cos ( θ D ) sin ( ϕ D ) sin ( θ D ) sin ( ϕ D ) .
E 2 ( k ) = T ( k ) · E 1 ( k ) .
T ( k ) = ( 2 w 1 ( k ) [ w 1 ( k ) + w 2 ( k ) ] + 2 u 2 ( n 2 1 ) [ w 1 ( k ) + w 2 ( k ) ] [ n 2 w 1 ( k ) + w 2 ( k ) ] 2 u υ ( n 2 1 ) [ w 1 ( k ) + w 2 ( k ) ] [ n 2 w 1 ( k ) + w 2 ( k ) ] 2 u [ n 2 w 1 ( k ) + w 2 ( k ) ] 2 u υ ( n 2 1 ) [ w 1 ( k ) + w 2 ( k ) ] [ n 2 w 1 ( k ) + w 2 ( k ) ] 0 2 w 1 ( k ) w 1 ( k ) + w 2 ( k ) + 2 υ 2 ( n 2 1 ) [ w 1 ( k ) + w 2 ( k ) ] [ n 2 w 1 ( k ) + w 2 ( k ) ] 0 2 υ [ n 2 w 1 ( k ) + w 2 ( k ) ] 0 ) .
w 2 ( k ) = n 2 ω 2 c 2 k 2 .
E 2 ( R ; R T ) = 1 4 π 2 2 ( k ) exp [ + i k r + i z w 2 ( k ) ] d k .
lim [ E 2 ( R D ; R T ) ] = i 2 π exp ( + i k 2 R D ) R D w 2 ( k D ) × T ( k D ) · E 1 ( k D ) ,
k D = k 2 ( x D / R D , y D / R D ) = n ( ω / c ) [ sin ( θ D ) cos ( ψ D ) , sin ( θ D ) sin ( ψ D ) ] .
d I D = τ n c 32 π 3 | A ( θ D , ψ D , ϕ D ) | 2 d Ω = τ n c 32 π 3 | w 2 ( k D ) P D · T ( k D ) · E 0 ( k D ) × exp [ + i | z T | w 1 ( k D ) ] | 2 d Ω .
A ( θ D , 0 , 0 ) = 2 w 2 ( k D ) w 1 ( k D ) w 2 ( k D ) + w 1 ( k D ) exp [ + i | z T | w 1 ( k D ) ] × E 0 [ n ω c sin ( θ D ) , 0 ] , A ( θ D , π / 2 , 0 ) = 2 w 2 ( k D ) w 1 ( k D ) w 2 ( k D ) + w 1 ( k D ) exp [ + i | z T | w 1 ( k D ) ] × E 0 [ 0 , n ω c sin ( θ D ) ] x .
[ E 0 ( x , y ) ] x = 4 i ω 3 π c 2 a 2 x 2 2 y 2 ( a 2 x 2 2 y 2 ) 1 / 2 E i , [ E 0 ( x , y ) ] y = 4 i ω 3 π c x y ( a 2 x 2 2 y 2 ) 1 / 2 E i ,
0 a x y J 0 ( x y ) a 2 x 2 d x = sin ( a y ) y .
E 0 ( k ) = 8 i k 0 a 3 E i 3 0 ( k ) ,
( 0 ) x = cos ( a k ) 3 υ 2 a 2 k 4 + sin ( a k ) a 2 u 4 + 3 υ 2 + a 2 u 2 υ 2 a 3 k 5 ( 0 ) y = + cos ( a k ) 3 u υ a 2 k 4 + sin ( a k ) u υ ( 3 + a 2 u 2 + a 2 υ 2 ) a 3 k 5 .
B D C = 1 I 1 d I D d Ω = 16 τ n 3 k 0 4 a 4 9 π 3 | cos ( θ D ) P D · T ( k D ) · 0 ( k D ) × exp [ + i | z T | w 1 ( k D ) ] | 2 .

Metrics