Abstract

Previous studies have suggested that targets illuminated by monochromatic (narrow-band) light are less effective in stimulating the eye to change its focus than are black–white (broadband) targets. The present study investigates the influence of target spectral bandwidth on the dynamic accommodation response in eight subjects. The fixation target was a 3.5-cycle/deg square-wave grating illuminated by midspectral light of various bandwidths [10, 40, and 80 nm and white (CIE Illuminant B)]. The target was moved sinusoidally toward and away from the eye, and accommodation responses were recorded and Fourier analyzed. Accommodative gain increases, and phase lag decreases, with increasing spectral bandwidth. Thus the eye focuses more accurately on targets of wider spectral bandwidth. The visual system appears to have the ability to analyze polychromatic blur to determine the state of focus of the eye for the purpose of guiding the accommodation response.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Ittleson, A. Ames, “Accommodation, convergence, and their relation to apparent distance,” J. Psychol. 30, 43–62 (1950).
    [CrossRef]
  2. P. B. Kruger, J. Pola, “Changing target size is a stimulus for accommodation,” J. Opt. Soc. Am. A 2, 1832–1835 (1985).
    [CrossRef] [PubMed]
  3. P. B. Kruger, “The effect of cognitive demand on accommodation,” Am. J. Optom. Physiol. Opt. 57, 440–445 (1980).
    [CrossRef] [PubMed]
  4. R. R. Provine, J. M. Enoch, “On voluntary ocular accommodation,” Percept. Psychophys. 17, 209–212 (1975).
    [CrossRef]
  5. L. N. McLin, C. M. Schor, “Voluntary effort as a stimulus to accommodation and vergence,” Invest. Ophthalmol. Vis. Sci. 29, 1739–1746 (1988).
    [PubMed]
  6. F. W. Campbell, G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. (London) 151, 285–295 (1960).
  7. L. M. Smithline, “Accommodative responses to blur,” J. Opt. Soc. Am. 64, 1512–1516 (1974).
    [CrossRef] [PubMed]
  8. A. Troelstra, B. L. Zuber, D. Miller, L. Stark, “Accommodative tracking: a trial-and-error function,” Vision Res. 4, 585–594 (1964).
    [CrossRef]
  9. S. Phillips, L. Stark, “Blur: a sufficient accommodative stimulus,” Doc. Ophthalmol. 43, 65–89 (1977).
    [CrossRef] [PubMed]
  10. W. N. Charman, J. Tucker, “Accommodation and color,” J. Opt. Soc. Am. 68, 459–471 (1978).
    [CrossRef] [PubMed]
  11. D. I. Flitcroft, S. J. Judge, “The effect of stimulus chromaticity on ocular accommodation in the monkey,” J. Physiol. (London) 398, 36 (1988).
  12. J. C. Kotulak, S. E. Morse, V. A. Billock, “Red–green opponent channel mediates control of human ocular accommodation,” J. Physiol. (London) (to be published).
  13. P. B. Kruger, J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26, 957–971 (1986).
    [CrossRef] [PubMed]
  14. P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
    [CrossRef] [PubMed]
  15. H. D. Crane, “A theoretical analysis of the visual accommodation system in humans,” Stanford Res. Inst. Proj. 5454, NASA CR-606 (NASA, Washington, D.C., 1966).
  16. A. Bradley, X. Zhang, L. N. Thibos, “Failures of isoluminance caused by ocular chromatic aberrations,” Appl. Opt. 31, 3657–3667 (1992).
    [CrossRef] [PubMed]
  17. D. I. Flitcroft, “A neural and computational model for the chromatic control of accommodation,” Visual Neurosci. 5, 547–555 (1990).
    [CrossRef]
  18. R. E. Bedford, G. Wyszecki, “Axial chromatic aberration of the eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [CrossRef] [PubMed]
  19. P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye and its correction,” Vision Res. 26, 361–366 (1986).
    [CrossRef]
  20. H. D. Crane, T. N. Cornsweet, “Ocular-focus stimulator,” J. Opt. Soc. Am. 60, 577 (1970).
  21. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [CrossRef] [PubMed]
  22. P. B. Kruger, “Infrared recording retinoscope for monotoring accommodation,” Am. J. Optom. Physiol. Opt. 56, 116–123 (1979).
    [CrossRef] [PubMed]
  23. J. Pokorny, V. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1.
  24. E. L. Krinov, “Spectral reflectance properties of natural formations,” Tech. Translation TT-439 (National Research Council of Canada, Ottawa, Canada, 1947).
  25. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, New York, 1967).
  26. G. A. Fry, Blur of the Retinal Image (Ohio State U. Press, Columbus, Ohio, 1955).
  27. M. Millidot, “Effect of aberrations of the eye on visual perception,” in Visual Psychophysics and Physiology, J. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978), Chap. 35.
    [CrossRef]
  28. A. Bradley, X. Zhang, L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68, 608–616 (1991).
    [CrossRef] [PubMed]
  29. F. W. Campbell, J. Robson, G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. (London) 145, 579–594 (1959).
  30. W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthal. Physiol. Opt. 8, 153–164 (1988).
    [CrossRef]
  31. G. Westheimer, “Focusing responses of the human eye,” Am. J. Optom. Arch. Am. Acad. Optom. 43, 221–232 (1966).
    [CrossRef] [PubMed]
  32. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatio-temporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
    [CrossRef] [PubMed]
  33. R. H. Hilz, G. Huppman, C. R. Cavonius, “Influence of luminance contrast on hue discrimination,” J. Opt. Soc. Am. 64, 763–766 (1974).
    [CrossRef] [PubMed]
  34. G. J. C. van der Horst, M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1969).
    [CrossRef] [PubMed]
  35. S. M. Mathews, N. Kapoor, D. Yager, P. B. Kruger, “Accommodative fluctuations and contrast decrement sensitivity,” Invest. Ophthal. Vis. Sci. Suppl. 34, 2974 (1993).

1993 (2)

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

S. M. Mathews, N. Kapoor, D. Yager, P. B. Kruger, “Accommodative fluctuations and contrast decrement sensitivity,” Invest. Ophthal. Vis. Sci. Suppl. 34, 2974 (1993).

1992 (1)

1991 (1)

A. Bradley, X. Zhang, L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68, 608–616 (1991).
[CrossRef] [PubMed]

1990 (1)

D. I. Flitcroft, “A neural and computational model for the chromatic control of accommodation,” Visual Neurosci. 5, 547–555 (1990).
[CrossRef]

1988 (3)

D. I. Flitcroft, S. J. Judge, “The effect of stimulus chromaticity on ocular accommodation in the monkey,” J. Physiol. (London) 398, 36 (1988).

L. N. McLin, C. M. Schor, “Voluntary effort as a stimulus to accommodation and vergence,” Invest. Ophthalmol. Vis. Sci. 29, 1739–1746 (1988).
[PubMed]

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthal. Physiol. Opt. 8, 153–164 (1988).
[CrossRef]

1986 (2)

P. B. Kruger, J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26, 957–971 (1986).
[CrossRef] [PubMed]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef]

1985 (1)

1981 (1)

1980 (1)

P. B. Kruger, “The effect of cognitive demand on accommodation,” Am. J. Optom. Physiol. Opt. 57, 440–445 (1980).
[CrossRef] [PubMed]

1979 (1)

P. B. Kruger, “Infrared recording retinoscope for monotoring accommodation,” Am. J. Optom. Physiol. Opt. 56, 116–123 (1979).
[CrossRef] [PubMed]

1978 (1)

1977 (1)

S. Phillips, L. Stark, “Blur: a sufficient accommodative stimulus,” Doc. Ophthalmol. 43, 65–89 (1977).
[CrossRef] [PubMed]

1975 (1)

R. R. Provine, J. M. Enoch, “On voluntary ocular accommodation,” Percept. Psychophys. 17, 209–212 (1975).
[CrossRef]

1974 (2)

1970 (1)

1969 (1)

1966 (2)

G. Westheimer, “Focusing responses of the human eye,” Am. J. Optom. Arch. Am. Acad. Optom. 43, 221–232 (1966).
[CrossRef] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

1964 (1)

A. Troelstra, B. L. Zuber, D. Miller, L. Stark, “Accommodative tracking: a trial-and-error function,” Vision Res. 4, 585–594 (1964).
[CrossRef]

1960 (1)

F. W. Campbell, G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. (London) 151, 285–295 (1960).

1959 (1)

F. W. Campbell, J. Robson, G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. (London) 145, 579–594 (1959).

1957 (1)

1950 (1)

W. H. Ittleson, A. Ames, “Accommodation, convergence, and their relation to apparent distance,” J. Psychol. 30, 43–62 (1950).
[CrossRef]

Aggarwala, K. R.

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

Ames, A.

W. H. Ittleson, A. Ames, “Accommodation, convergence, and their relation to apparent distance,” J. Psychol. 30, 43–62 (1950).
[CrossRef]

Bedford, R. E.

Billock, V. A.

J. C. Kotulak, S. E. Morse, V. A. Billock, “Red–green opponent channel mediates control of human ocular accommodation,” J. Physiol. (London) (to be published).

Bouman, M. A.

Bradley, A.

A. Bradley, X. Zhang, L. N. Thibos, “Failures of isoluminance caused by ocular chromatic aberrations,” Appl. Opt. 31, 3657–3667 (1992).
[CrossRef] [PubMed]

A. Bradley, X. Zhang, L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68, 608–616 (1991).
[CrossRef] [PubMed]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef]

Campbell, F. W.

F. W. Campbell, G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. (London) 151, 285–295 (1960).

F. W. Campbell, J. Robson, G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. (London) 145, 579–594 (1959).

Cavonius, C. R.

Charman, W. N.

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthal. Physiol. Opt. 8, 153–164 (1988).
[CrossRef]

W. N. Charman, J. Tucker, “Accommodation and color,” J. Opt. Soc. Am. 68, 459–471 (1978).
[CrossRef] [PubMed]

Cornsweet, T. N.

Crane, H. D.

H. D. Crane, T. N. Cornsweet, “Ocular-focus stimulator,” J. Opt. Soc. Am. 60, 577 (1970).

H. D. Crane, “A theoretical analysis of the visual accommodation system in humans,” Stanford Res. Inst. Proj. 5454, NASA CR-606 (NASA, Washington, D.C., 1966).

Enoch, J. M.

R. R. Provine, J. M. Enoch, “On voluntary ocular accommodation,” Percept. Psychophys. 17, 209–212 (1975).
[CrossRef]

Flitcroft, D. I.

D. I. Flitcroft, “A neural and computational model for the chromatic control of accommodation,” Visual Neurosci. 5, 547–555 (1990).
[CrossRef]

D. I. Flitcroft, S. J. Judge, “The effect of stimulus chromaticity on ocular accommodation in the monkey,” J. Physiol. (London) 398, 36 (1988).

Fry, G. A.

G. A. Fry, Blur of the Retinal Image (Ohio State U. Press, Columbus, Ohio, 1955).

Heron, G.

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthal. Physiol. Opt. 8, 153–164 (1988).
[CrossRef]

Heuts, M. J. G.

Hilz, R. H.

Howarth, P. A.

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef]

Huppman, G.

Ittleson, W. H.

W. H. Ittleson, A. Ames, “Accommodation, convergence, and their relation to apparent distance,” J. Psychol. 30, 43–62 (1950).
[CrossRef]

Judge, S. J.

D. I. Flitcroft, S. J. Judge, “The effect of stimulus chromaticity on ocular accommodation in the monkey,” J. Physiol. (London) 398, 36 (1988).

Kapoor, N.

S. M. Mathews, N. Kapoor, D. Yager, P. B. Kruger, “Accommodative fluctuations and contrast decrement sensitivity,” Invest. Ophthal. Vis. Sci. Suppl. 34, 2974 (1993).

Koenderink, J. J.

Kotulak, J. C.

J. C. Kotulak, S. E. Morse, V. A. Billock, “Red–green opponent channel mediates control of human ocular accommodation,” J. Physiol. (London) (to be published).

Krinov, E. L.

E. L. Krinov, “Spectral reflectance properties of natural formations,” Tech. Translation TT-439 (National Research Council of Canada, Ottawa, Canada, 1947).

Kruger, P. B.

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

S. M. Mathews, N. Kapoor, D. Yager, P. B. Kruger, “Accommodative fluctuations and contrast decrement sensitivity,” Invest. Ophthal. Vis. Sci. Suppl. 34, 2974 (1993).

P. B. Kruger, J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26, 957–971 (1986).
[CrossRef] [PubMed]

P. B. Kruger, J. Pola, “Changing target size is a stimulus for accommodation,” J. Opt. Soc. Am. A 2, 1832–1835 (1985).
[CrossRef] [PubMed]

P. B. Kruger, “The effect of cognitive demand on accommodation,” Am. J. Optom. Physiol. Opt. 57, 440–445 (1980).
[CrossRef] [PubMed]

P. B. Kruger, “Infrared recording retinoscope for monotoring accommodation,” Am. J. Optom. Physiol. Opt. 56, 116–123 (1979).
[CrossRef] [PubMed]

Mathews, S.

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

Mathews, S. M.

S. M. Mathews, N. Kapoor, D. Yager, P. B. Kruger, “Accommodative fluctuations and contrast decrement sensitivity,” Invest. Ophthal. Vis. Sci. Suppl. 34, 2974 (1993).

McLin, L. N.

L. N. McLin, C. M. Schor, “Voluntary effort as a stimulus to accommodation and vergence,” Invest. Ophthalmol. Vis. Sci. 29, 1739–1746 (1988).
[PubMed]

Miller, D.

A. Troelstra, B. L. Zuber, D. Miller, L. Stark, “Accommodative tracking: a trial-and-error function,” Vision Res. 4, 585–594 (1964).
[CrossRef]

Millidot, M.

M. Millidot, “Effect of aberrations of the eye on visual perception,” in Visual Psychophysics and Physiology, J. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978), Chap. 35.
[CrossRef]

Morse, S. E.

J. C. Kotulak, S. E. Morse, V. A. Billock, “Red–green opponent channel mediates control of human ocular accommodation,” J. Physiol. (London) (to be published).

Noorlander, C.

Phillips, S.

S. Phillips, L. Stark, “Blur: a sufficient accommodative stimulus,” Doc. Ophthalmol. 43, 65–89 (1977).
[CrossRef] [PubMed]

Pokorny, J.

J. Pokorny, V. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1.

Pola, J.

P. B. Kruger, J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26, 957–971 (1986).
[CrossRef] [PubMed]

P. B. Kruger, J. Pola, “Changing target size is a stimulus for accommodation,” J. Opt. Soc. Am. A 2, 1832–1835 (1985).
[CrossRef] [PubMed]

Provine, R. R.

R. R. Provine, J. M. Enoch, “On voluntary ocular accommodation,” Percept. Psychophys. 17, 209–212 (1975).
[CrossRef]

Robson, J.

F. W. Campbell, J. Robson, G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. (London) 145, 579–594 (1959).

Sanchez, N.

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

Schor, C. M.

L. N. McLin, C. M. Schor, “Voluntary effort as a stimulus to accommodation and vergence,” Invest. Ophthalmol. Vis. Sci. 29, 1739–1746 (1988).
[PubMed]

Smith, V.

J. Pokorny, V. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1.

Smithline, L. M.

Stark, L.

S. Phillips, L. Stark, “Blur: a sufficient accommodative stimulus,” Doc. Ophthalmol. 43, 65–89 (1977).
[CrossRef] [PubMed]

A. Troelstra, B. L. Zuber, D. Miller, L. Stark, “Accommodative tracking: a trial-and-error function,” Vision Res. 4, 585–594 (1964).
[CrossRef]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, New York, 1967).

Thibos, L. N.

Troelstra, A.

A. Troelstra, B. L. Zuber, D. Miller, L. Stark, “Accommodative tracking: a trial-and-error function,” Vision Res. 4, 585–594 (1964).
[CrossRef]

Tucker, J.

van der Horst, G. J. C.

Westheimer, G.

G. Westheimer, “Focusing responses of the human eye,” Am. J. Optom. Arch. Am. Acad. Optom. 43, 221–232 (1966).
[CrossRef] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

F. W. Campbell, G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. (London) 151, 285–295 (1960).

F. W. Campbell, J. Robson, G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. (London) 145, 579–594 (1959).

Wyszecki, G.

R. E. Bedford, G. Wyszecki, “Axial chromatic aberration of the eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
[CrossRef] [PubMed]

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, New York, 1967).

Yager, D.

S. M. Mathews, N. Kapoor, D. Yager, P. B. Kruger, “Accommodative fluctuations and contrast decrement sensitivity,” Invest. Ophthal. Vis. Sci. Suppl. 34, 2974 (1993).

Zhang, X.

Zuber, B. L.

A. Troelstra, B. L. Zuber, D. Miller, L. Stark, “Accommodative tracking: a trial-and-error function,” Vision Res. 4, 585–594 (1964).
[CrossRef]

Am. J. Optom. Arch. Am. Acad. Optom. (1)

G. Westheimer, “Focusing responses of the human eye,” Am. J. Optom. Arch. Am. Acad. Optom. 43, 221–232 (1966).
[CrossRef] [PubMed]

Am. J. Optom. Physiol. Opt. (2)

P. B. Kruger, “Infrared recording retinoscope for monotoring accommodation,” Am. J. Optom. Physiol. Opt. 56, 116–123 (1979).
[CrossRef] [PubMed]

P. B. Kruger, “The effect of cognitive demand on accommodation,” Am. J. Optom. Physiol. Opt. 57, 440–445 (1980).
[CrossRef] [PubMed]

Appl. Opt. (1)

Doc. Ophthalmol. (1)

S. Phillips, L. Stark, “Blur: a sufficient accommodative stimulus,” Doc. Ophthalmol. 43, 65–89 (1977).
[CrossRef] [PubMed]

Invest. Ophthal. Vis. Sci. Suppl. (1)

S. M. Mathews, N. Kapoor, D. Yager, P. B. Kruger, “Accommodative fluctuations and contrast decrement sensitivity,” Invest. Ophthal. Vis. Sci. Suppl. 34, 2974 (1993).

Invest. Ophthalmol. Vis. Sci. (1)

L. N. McLin, C. M. Schor, “Voluntary effort as a stimulus to accommodation and vergence,” Invest. Ophthalmol. Vis. Sci. 29, 1739–1746 (1988).
[PubMed]

J. Opt. Soc. Am. (7)

J. Opt. Soc. Am. A (1)

J. Physiol. (London) (3)

F. W. Campbell, G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. (London) 151, 285–295 (1960).

D. I. Flitcroft, S. J. Judge, “The effect of stimulus chromaticity on ocular accommodation in the monkey,” J. Physiol. (London) 398, 36 (1988).

F. W. Campbell, J. Robson, G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. (London) 145, 579–594 (1959).

J. Psychol. (1)

W. H. Ittleson, A. Ames, “Accommodation, convergence, and their relation to apparent distance,” J. Psychol. 30, 43–62 (1950).
[CrossRef]

Ophthal. Physiol. Opt. (1)

W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthal. Physiol. Opt. 8, 153–164 (1988).
[CrossRef]

Optom. Vis. Sci. (1)

A. Bradley, X. Zhang, L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68, 608–616 (1991).
[CrossRef] [PubMed]

Percept. Psychophys. (1)

R. R. Provine, J. M. Enoch, “On voluntary ocular accommodation,” Percept. Psychophys. 17, 209–212 (1975).
[CrossRef]

Vision Res. (5)

A. Troelstra, B. L. Zuber, D. Miller, L. Stark, “Accommodative tracking: a trial-and-error function,” Vision Res. 4, 585–594 (1964).
[CrossRef]

P. B. Kruger, J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26, 957–971 (1986).
[CrossRef] [PubMed]

P. B. Kruger, S. Mathews, K. R. Aggarwala, N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397–1411 (1993).
[CrossRef] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef]

Visual Neurosci. (1)

D. I. Flitcroft, “A neural and computational model for the chromatic control of accommodation,” Visual Neurosci. 5, 547–555 (1990).
[CrossRef]

Other (7)

H. D. Crane, “A theoretical analysis of the visual accommodation system in humans,” Stanford Res. Inst. Proj. 5454, NASA CR-606 (NASA, Washington, D.C., 1966).

J. C. Kotulak, S. E. Morse, V. A. Billock, “Red–green opponent channel mediates control of human ocular accommodation,” J. Physiol. (London) (to be published).

J. Pokorny, V. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1.

E. L. Krinov, “Spectral reflectance properties of natural formations,” Tech. Translation TT-439 (National Research Council of Canada, Ottawa, Canada, 1947).

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, New York, 1967).

G. A. Fry, Blur of the Retinal Image (Ohio State U. Press, Columbus, Ohio, 1955).

M. Millidot, “Effect of aberrations of the eye on visual perception,” in Visual Psychophysics and Physiology, J. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978), Chap. 35.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the Badal optical system for stimulating accommodation of the eye (E). Dashed lines show the optical path from the source of illumination, and solid lines represent target optics. Interference filters of three bandwidths (10, 40, and 80 nm) could be introduced at F to alter the spectral composition of a square-wave grating target (T). The sinusoidal motion of prism P2 moved an aerial image of target T′ toward and away from the Badal lens (L4) through a range of 1.0 D.

Fig. 2
Fig. 2

Spectral distributions of the four test conditions (10, 40, and 80 nm and white) normalized to their individual peaks. The bandwidths specified here are nominal in that they refer to the filter manufacturer’s specifications of bandwidth at half-peak transmittance.

Fig. 3
Fig. 3

Accommodation responses to the four target conditions for two subjects. The uppermost trace (stimulus) shows sinusoidal target motion (0.2 Hz, 1-D amplitude) toward and away from the Badal lens. The response traces represent accommodation to a 3.5-cyc/deg square-wave grating target illuminated by light of a specified spectral distribution (Fig. 2). The two subjects shown here are not typical but rather depict extremes of the range of accommodative behaviors observed in the present study.

Fig. 4
Fig. 4

Gain and phase lag of accommodation as a function of the spectral bandwidth of the target for two typical subjects, determined by a vector average of five trials per condition. The gain is an amplitude ratio (response/stimulus), and the phase lag is a time lag of the response with regard to the stimulus. As the target’s spectral bandwidth increases, accommodative gain improves and phase lag declines.

Fig. 5
Fig. 5

Average gain and phase data for eight subjects to each of the four spectral conditions (10, 40, and 80 nm and white). Accommodative gain increases and phase lag decreases with increasing spectral bandwidth.

Fig. 6
Fig. 6

Effective spectral distribution of the test conditions computed by multiplication of the photopic spectral sensitivity function of the eye by the functions depicted in Fig. 2. The horizontal line is 1/e height for these effective wavebands. The points of intersection of the 1/e line with the wavebands in the short-wave region (below 550 nm) are designated λS, and those in the long-wave region are represented by λL. Numerical values for λS and λL are given in Table 1.

Fig. 7
Fig. 7

Effect of increasing spectral bandwidth on the blur-spread function (of a luminance edge) for an eye with a 4-mm pupil. The longer wavelength (λL) of each spectral condition is in focus (dotted curves), and the shorter wavelength (λS) is out of focus (dashed curves) by an amount dependent on the longitudinal chromatic aberration produced by light of these two wavelengths.

Tables (1)

Tables Icon

Table 1 Optical Vergence and LCA for Each of the Four Spectral Wavebands at Two Extreme Wavelengths, λL and λS

Metrics