Abstract

Techniques for the design of continuously tapered two-dimensional (2D) subwavelength surface-relief grating structures for broadband antireflection surfaces are investigated. It has been determined that the Klopfenstein taper [ Proc. IRE 44, 31 ( 1956)] produces the optimum graded-index profile with the smallest depth for any specified minimum reflectance. A technique is developed to design the equivalent tapered subwavelength surface-relief grating structure by use of 2D effective-medium theory. An optimal Klopfenstein tapered 2D subwavelength grating is designed to reduce the Fresnel reflections by 20 dB over a broad band from an air–substrate (ns = 3.0) interface. The performance is verified by use of both a 2D effective-medium-theory simulation algorithm and rigorous coupled-wave analysis. These structures are also shown to achieve this low reflectance over a wide field of view (θFOV > 110°). The pyramidal spatial profile, which has generally been assumed to produce the optimal broadband antireflection grating structure, is shown to require a significantly larger depth to achieve the same performance as a Klopfenstein-designed tapered antireflection grating structure.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription