Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces based on Monte Carlo simulations

Not Accessible

Your library or personal account may give you access

Abstract

Backscattering enhancement of electromagnetic wave scattering from a perfectly conducting two-dimensional random rough surface (three-dimensional scattering problem) is studied with Monte Carlo simulations. The magnetic-field integral equation formulation is used with the method of moments. The solution of the matrix equation is calculated exactly with an efficient method known as the sparse-matrix flat-surface iterative approach. Numerical examples are illustrated with 32,768 surface unknowns, surface areas between 256 and 1024 square wavelengths, rms heights of 0.5 and 1 wavelength, and as many as 1000 realizations. The bistatic scattering simulations show backscattering enhancement for both copolarized and cross-polarized components. Comparisons are made with controlled laboratory experimental data for which the random rough surfaces are fabricated with prescribed properties of a rms height of 1 wavelength and a correlation length equal to 2 wavelengths. Comparisons are made between simulations and experimental data for the absolute value of the bistatic scattering coefficient. The copolarized scattering coefficient is in good agreement, and the cross-polarized scattering coefficient is in excellent agreement.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Monte Carlo simulations of large-scale composite random rough-surface scattering based on the banded-matrix iterative approach

Leung Tsang, Chi H. Chan, Kyung Pak, Haresh Sangani, Akira Ishimaru, and Phillip Phu
J. Opt. Soc. Am. A 11(2) 691-696 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved