Abstract

Subjective transverse chromatic aberration (sTCA) manifest at the fovea was determined for a population of 85 young adults (19–38 years old) by means of a two-dimensional, two-color, vernier alignment technique. The statistical distribution of sTCA was well fitted by a bivariate Gaussian function with mean values that were not significantly different from zero in either the horizontal or the vertical direction. We conclude from this result that a hypothetical, average eye representing the population mean of human eyes with medium-sized pupils is free of foveal sTCA. However, the absolute magnitude of sTCA for any given individual was often significantly greater than zero and ranged from 0.05 to 2.67 arcmin for the red and the blue lights of a computer monitor (mean wavelengths, 605 and 497 nm, respectively). The statistical distribution of the absolute magnitude of sTCA was well described by a Rayleigh probability distribution with a mean of 0.8 arcmin. A simple device useful for population screening in a clinical setting was also tested and gave concordant results. Assuming that sTCA at the fovea is due to decentering of the pupil with respect to the visual axis, we infer from these results that the pupil is, on average, well centered in human eyes. The average magnitude of pupil decentration in individual eyes is less than 0.5 mm, which corresponds to ψ = 3 deg for the angle between the achromatic and the visual axes of the eye.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. (London) 192, 345–358 (1967).
  2. W. N. Charman, “The retinal image in the human eye,” in Progress in Retinal Research, N. N. Osborne, G. J. Chader, eds. (Pergamon, Oxford, 1983), pp. 1–50.
    [CrossRef]
  3. A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics, 1st ed. (Butterworths, London, 1984).
  4. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
    [CrossRef] [PubMed]
  5. X. X. Zhang, Ocular Chromatic Aberrations and Their Effect on Polychromatic Retinal Image Quality, Ph.D. dissertation (UMI 9109796, Indiana University, Bloomington, Ind., 1990).
  6. A. Bradley, L. Thibos, X. X. Zhang, M. Ye, “The effects of ocular chromatic aberration on visual performance for displayed achromatic and chromatic information,” in Society for Information Display International Symposium Digests (Society for Information Display, Anaheim, Calif., 1991), pp. 304–307.
  7. L. N. Thibos, A. Bradley, X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
    [CrossRef]
  8. P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4, 223–226 (1984).
    [CrossRef] [PubMed]
  9. Y. U. Ogboso, H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
    [CrossRef] [PubMed]
  10. L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
    [CrossRef] [PubMed]
  11. P. Simonet, M. C. W. Campbell, “Effect of luminance on the directions of chromostereopsis and transverse chromatic aberration observed with natural pupils,” Ophthalmic Physiol. Opt. 10, 271–279 (1990).
    [CrossRef] [PubMed]
  12. P. Simonet, M. C. W. Campbell, “The optical tranverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
    [CrossRef]
  13. A. Bradley, “Perceptual manifestations of imperfect optics in the human eye: attempts to correct for ocular chromatic aberration,” Optom. Vision Sci. 69, 515–521 (1992).
    [CrossRef]
  14. A. van Meeteren, C. J. W. Dunnewold, “Image quality of the human eye for eccentric pupils,” Vision Res. 23, 573–579 (1983).
    [CrossRef]
  15. I. E. Loewenfeld, The Pupil, 1st ed. (Wayne State U. Press, Detroit, Mich., 1993), Vol. 1.
  16. H. E. Cross, “Ectopia lentis et pupillae,” Am. J. Ophthalmol. 88, 381–384 (1979).
    [PubMed]
  17. M. A. Wilson, M. C. W. Campbell, P. Simonet, “Change of pupil centration with change of illumination and pupil size,” Optom. Vision Sci. 69, 129–136 (1992).
    [CrossRef]
  18. J. J. Vos, “Some new aspects of color stereoscopy,” J. Opt. Soc. Am. 50, 785–790 (1960).
    [CrossRef]
  19. J. J. Vos, “The color stereoscopic effect,” Vision Res. 6, 105–107 (1966).
    [CrossRef] [PubMed]
  20. M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “The effect of pupil size on chromostereopsis and chromatic diplopia: interaction between the Stiles–Crawford effect and chromatic aberrations,” Vision Res. 32, 2121–2128 (1992).
    [CrossRef] [PubMed]
  21. M. H. Freeman, Optics, 10th ed. (Butterworths, London, 1990).
  22. L. N. Thibos, M. Ye, X. X. Zhang, A. B. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
    [CrossRef] [PubMed]
  23. B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res.35, (to be published).
    [PubMed]
  24. T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 2nd ed. (Wiley, New York, 1971).
  25. W. J. Krzanowski, Principles of Multivariate Analysis (Clarendon, Oxford, 1988).
  26. G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
    [CrossRef] [PubMed]
  27. J. M. Sundet, “Effects of color on perceived depth (review of experiments and evaluation of theories),” Scand. J. Psychol. 19, 133–143 (1978).
    [CrossRef]
  28. M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “Interocular differences in transverse chromatic aberration determine chromostereopsis for small pupils,” Vision Res. 31, 1787–1796 (1991).
    [CrossRef] [PubMed]
  29. F. H. Verhoeff, “An optical illusion due to chromatic aberration,” Am. J. Ophthalmol. 11, 898–900 (1928).
  30. B. N. Kishto, “The colour stereoscopic effect,” Vision Res. 5, 313–329 (1965).
    [CrossRef]
  31. J. M. Sundet, “The effect of pupil size variations in the color stereoscopic phenomenon,” Vision Res. 12, 1027–1032 (1972).
    [CrossRef] [PubMed]
  32. J. Faubert, “Seeing depth in colour: more than just what meets the eyes,” Vision Res. 34, 1165–1186 (1994).
    [CrossRef] [PubMed]
  33. H. Metcalf, “Stiles–Crawford apodization,” J. Opt. Soc. Am. 55, 72–74 (1965).
    [CrossRef]
  34. R. A. Applegate, A. B. Bonds, “Induced movement of receptor alignment toward a new pupillary aperture,” Invest. Ophthalmol. Vis. Sci. 21, 869–873 (1981).
    [PubMed]
  35. R. A. Applegate, A. J. Adams, A. Bradley, A. Eisner, “Total occlusion does not disrupt photoreceptor alignment,” Invest. Ophthalmol. Vis. Sci. 27, 441–443 (1986).
    [PubMed]
  36. R. A. Applegate, V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 1611–1623 (1993).
    [CrossRef] [PubMed]
  37. J. M. Enoch, G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. 12, 497–503 (1973).
    [PubMed]
  38. J. M. Enoch, D. G. Birch, E. E. Birch, “Monocular light exclusion for a period of days reduces directional sensitivity of the human retina,” Science 206, 705–707 (1979).
    [CrossRef] [PubMed]
  39. J. M. Enoch, D. G. Birch, “Inferred positive phototropic activity in the human eye,” Philos. Trans. R. Soc. B 291, 293–303 (1981).
    [CrossRef]
  40. J. M. Enoch, A. Eisner, H. E. Bedell, “Further evaluation of an apparent failure of the photoreceptor alignment mechanism in a human observer,” Arch. Ophthalmol. 100, 1280–1281 (1982).
    [CrossRef] [PubMed]
  41. J. M. Enoch, R. D. Hamer, V. Lakshminarayanan, T. Yasuma, D. G. Birch, S. Yamade, “Effect of monocular light exclusion on the Stiles–Crawford effect,” Vision Res. 27, 507–510 (1987).
    [CrossRef]

1994 (1)

J. Faubert, “Seeing depth in colour: more than just what meets the eyes,” Vision Res. 34, 1165–1186 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (4)

A. Bradley, “Perceptual manifestations of imperfect optics in the human eye: attempts to correct for ocular chromatic aberration,” Optom. Vision Sci. 69, 515–521 (1992).
[CrossRef]

M. A. Wilson, M. C. W. Campbell, P. Simonet, “Change of pupil centration with change of illumination and pupil size,” Optom. Vision Sci. 69, 129–136 (1992).
[CrossRef]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “The effect of pupil size on chromostereopsis and chromatic diplopia: interaction between the Stiles–Crawford effect and chromatic aberrations,” Vision Res. 32, 2121–2128 (1992).
[CrossRef] [PubMed]

L. N. Thibos, M. Ye, X. X. Zhang, A. B. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

1991 (2)

L. N. Thibos, A. Bradley, X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “Interocular differences in transverse chromatic aberration determine chromostereopsis for small pupils,” Vision Res. 31, 1787–1796 (1991).
[CrossRef] [PubMed]

1990 (3)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

P. Simonet, M. C. W. Campbell, “Effect of luminance on the directions of chromostereopsis and transverse chromatic aberration observed with natural pupils,” Ophthalmic Physiol. Opt. 10, 271–279 (1990).
[CrossRef] [PubMed]

P. Simonet, M. C. W. Campbell, “The optical tranverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

1988 (1)

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

1987 (3)

1986 (1)

R. A. Applegate, A. J. Adams, A. Bradley, A. Eisner, “Total occlusion does not disrupt photoreceptor alignment,” Invest. Ophthalmol. Vis. Sci. 27, 441–443 (1986).
[PubMed]

1984 (1)

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4, 223–226 (1984).
[CrossRef] [PubMed]

1983 (1)

A. van Meeteren, C. J. W. Dunnewold, “Image quality of the human eye for eccentric pupils,” Vision Res. 23, 573–579 (1983).
[CrossRef]

1982 (1)

J. M. Enoch, A. Eisner, H. E. Bedell, “Further evaluation of an apparent failure of the photoreceptor alignment mechanism in a human observer,” Arch. Ophthalmol. 100, 1280–1281 (1982).
[CrossRef] [PubMed]

1981 (2)

J. M. Enoch, D. G. Birch, “Inferred positive phototropic activity in the human eye,” Philos. Trans. R. Soc. B 291, 293–303 (1981).
[CrossRef]

R. A. Applegate, A. B. Bonds, “Induced movement of receptor alignment toward a new pupillary aperture,” Invest. Ophthalmol. Vis. Sci. 21, 869–873 (1981).
[PubMed]

1979 (2)

J. M. Enoch, D. G. Birch, E. E. Birch, “Monocular light exclusion for a period of days reduces directional sensitivity of the human retina,” Science 206, 705–707 (1979).
[CrossRef] [PubMed]

H. E. Cross, “Ectopia lentis et pupillae,” Am. J. Ophthalmol. 88, 381–384 (1979).
[PubMed]

1978 (1)

J. M. Sundet, “Effects of color on perceived depth (review of experiments and evaluation of theories),” Scand. J. Psychol. 19, 133–143 (1978).
[CrossRef]

1973 (1)

J. M. Enoch, G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. 12, 497–503 (1973).
[PubMed]

1972 (1)

J. M. Sundet, “The effect of pupil size variations in the color stereoscopic phenomenon,” Vision Res. 12, 1027–1032 (1972).
[CrossRef] [PubMed]

1967 (1)

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. (London) 192, 345–358 (1967).

1966 (1)

J. J. Vos, “The color stereoscopic effect,” Vision Res. 6, 105–107 (1966).
[CrossRef] [PubMed]

1965 (2)

B. N. Kishto, “The colour stereoscopic effect,” Vision Res. 5, 313–329 (1965).
[CrossRef]

H. Metcalf, “Stiles–Crawford apodization,” J. Opt. Soc. Am. 55, 72–74 (1965).
[CrossRef]

1960 (1)

1928 (1)

F. H. Verhoeff, “An optical illusion due to chromatic aberration,” Am. J. Ophthalmol. 11, 898–900 (1928).

Adams, A. J.

R. A. Applegate, A. J. Adams, A. Bradley, A. Eisner, “Total occlusion does not disrupt photoreceptor alignment,” Invest. Ophthalmol. Vis. Sci. 27, 441–443 (1986).
[PubMed]

Anderson, T. W.

T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 2nd ed. (Wiley, New York, 1971).

Applegate, R. A.

R. A. Applegate, V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 1611–1623 (1993).
[CrossRef] [PubMed]

R. A. Applegate, A. J. Adams, A. Bradley, A. Eisner, “Total occlusion does not disrupt photoreceptor alignment,” Invest. Ophthalmol. Vis. Sci. 27, 441–443 (1986).
[PubMed]

R. A. Applegate, A. B. Bonds, “Induced movement of receptor alignment toward a new pupillary aperture,” Invest. Ophthalmol. Vis. Sci. 21, 869–873 (1981).
[PubMed]

Bedell, H. E.

Y. U. Ogboso, H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
[CrossRef] [PubMed]

J. M. Enoch, A. Eisner, H. E. Bedell, “Further evaluation of an apparent failure of the photoreceptor alignment mechanism in a human observer,” Arch. Ophthalmol. 100, 1280–1281 (1982).
[CrossRef] [PubMed]

Bennett, A. G.

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics, 1st ed. (Butterworths, London, 1984).

Birch, D. G.

J. M. Enoch, R. D. Hamer, V. Lakshminarayanan, T. Yasuma, D. G. Birch, S. Yamade, “Effect of monocular light exclusion on the Stiles–Crawford effect,” Vision Res. 27, 507–510 (1987).
[CrossRef]

J. M. Enoch, D. G. Birch, “Inferred positive phototropic activity in the human eye,” Philos. Trans. R. Soc. B 291, 293–303 (1981).
[CrossRef]

J. M. Enoch, D. G. Birch, E. E. Birch, “Monocular light exclusion for a period of days reduces directional sensitivity of the human retina,” Science 206, 705–707 (1979).
[CrossRef] [PubMed]

Birch, E. E.

J. M. Enoch, D. G. Birch, E. E. Birch, “Monocular light exclusion for a period of days reduces directional sensitivity of the human retina,” Science 206, 705–707 (1979).
[CrossRef] [PubMed]

Bonds, A. B.

R. A. Applegate, A. B. Bonds, “Induced movement of receptor alignment toward a new pupillary aperture,” Invest. Ophthalmol. Vis. Sci. 21, 869–873 (1981).
[PubMed]

Bradley, A.

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “The effect of pupil size on chromostereopsis and chromatic diplopia: interaction between the Stiles–Crawford effect and chromatic aberrations,” Vision Res. 32, 2121–2128 (1992).
[CrossRef] [PubMed]

A. Bradley, “Perceptual manifestations of imperfect optics in the human eye: attempts to correct for ocular chromatic aberration,” Optom. Vision Sci. 69, 515–521 (1992).
[CrossRef]

L. N. Thibos, A. Bradley, X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “Interocular differences in transverse chromatic aberration determine chromostereopsis for small pupils,” Vision Res. 31, 1787–1796 (1991).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

R. A. Applegate, A. J. Adams, A. Bradley, A. Eisner, “Total occlusion does not disrupt photoreceptor alignment,” Invest. Ophthalmol. Vis. Sci. 27, 441–443 (1986).
[PubMed]

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res.35, (to be published).
[PubMed]

A. Bradley, L. Thibos, X. X. Zhang, M. Ye, “The effects of ocular chromatic aberration on visual performance for displayed achromatic and chromatic information,” in Society for Information Display International Symposium Digests (Society for Information Display, Anaheim, Calif., 1991), pp. 304–307.

Bradley, A. B.

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. (London) 192, 345–358 (1967).

Campbell, M. C. W.

M. A. Wilson, M. C. W. Campbell, P. Simonet, “Change of pupil centration with change of illumination and pupil size,” Optom. Vision Sci. 69, 129–136 (1992).
[CrossRef]

P. Simonet, M. C. W. Campbell, “Effect of luminance on the directions of chromostereopsis and transverse chromatic aberration observed with natural pupils,” Ophthalmic Physiol. Opt. 10, 271–279 (1990).
[CrossRef] [PubMed]

P. Simonet, M. C. W. Campbell, “The optical tranverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

Charman, W. N.

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

W. N. Charman, “The retinal image in the human eye,” in Progress in Retinal Research, N. N. Osborne, G. J. Chader, eds. (Pergamon, Oxford, 1983), pp. 1–50.
[CrossRef]

Cross, H. E.

H. E. Cross, “Ectopia lentis et pupillae,” Am. J. Ophthalmol. 88, 381–384 (1979).
[PubMed]

Dunnewold, C. J. W.

A. van Meeteren, C. J. W. Dunnewold, “Image quality of the human eye for eccentric pupils,” Vision Res. 23, 573–579 (1983).
[CrossRef]

Eisner, A.

R. A. Applegate, A. J. Adams, A. Bradley, A. Eisner, “Total occlusion does not disrupt photoreceptor alignment,” Invest. Ophthalmol. Vis. Sci. 27, 441–443 (1986).
[PubMed]

J. M. Enoch, A. Eisner, H. E. Bedell, “Further evaluation of an apparent failure of the photoreceptor alignment mechanism in a human observer,” Arch. Ophthalmol. 100, 1280–1281 (1982).
[CrossRef] [PubMed]

Enoch, J. M.

J. M. Enoch, R. D. Hamer, V. Lakshminarayanan, T. Yasuma, D. G. Birch, S. Yamade, “Effect of monocular light exclusion on the Stiles–Crawford effect,” Vision Res. 27, 507–510 (1987).
[CrossRef]

J. M. Enoch, A. Eisner, H. E. Bedell, “Further evaluation of an apparent failure of the photoreceptor alignment mechanism in a human observer,” Arch. Ophthalmol. 100, 1280–1281 (1982).
[CrossRef] [PubMed]

J. M. Enoch, D. G. Birch, “Inferred positive phototropic activity in the human eye,” Philos. Trans. R. Soc. B 291, 293–303 (1981).
[CrossRef]

J. M. Enoch, D. G. Birch, E. E. Birch, “Monocular light exclusion for a period of days reduces directional sensitivity of the human retina,” Science 206, 705–707 (1979).
[CrossRef] [PubMed]

J. M. Enoch, G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. 12, 497–503 (1973).
[PubMed]

Faubert, J.

J. Faubert, “Seeing depth in colour: more than just what meets the eyes,” Vision Res. 34, 1165–1186 (1994).
[CrossRef] [PubMed]

Freeman, M. H.

M. H. Freeman, Optics, 10th ed. (Butterworths, London, 1990).

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. (London) 192, 345–358 (1967).

Hamer, R. D.

J. M. Enoch, R. D. Hamer, V. Lakshminarayanan, T. Yasuma, D. G. Birch, S. Yamade, “Effect of monocular light exclusion on the Stiles–Crawford effect,” Vision Res. 27, 507–510 (1987).
[CrossRef]

Hope, G. M.

J. M. Enoch, G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. 12, 497–503 (1973).
[PubMed]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4, 223–226 (1984).
[CrossRef] [PubMed]

Kishto, B. N.

B. N. Kishto, “The colour stereoscopic effect,” Vision Res. 5, 313–329 (1965).
[CrossRef]

Krzanowski, W. J.

W. J. Krzanowski, Principles of Multivariate Analysis (Clarendon, Oxford, 1988).

Lakshminarayanan, V.

R. A. Applegate, V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 1611–1623 (1993).
[CrossRef] [PubMed]

J. M. Enoch, R. D. Hamer, V. Lakshminarayanan, T. Yasuma, D. G. Birch, S. Yamade, “Effect of monocular light exclusion on the Stiles–Crawford effect,” Vision Res. 27, 507–510 (1987).
[CrossRef]

Loewenfeld, I. E.

I. E. Loewenfeld, The Pupil, 1st ed. (Wayne State U. Press, Detroit, Mich., 1993), Vol. 1.

McGraw, P. V.

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res.35, (to be published).
[PubMed]

Metcalf, H.

Ogboso, Y. U.

Rabbetts, R. B.

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics, 1st ed. (Butterworths, London, 1984).

Simonet, P.

M. A. Wilson, M. C. W. Campbell, P. Simonet, “Change of pupil centration with change of illumination and pupil size,” Optom. Vision Sci. 69, 129–136 (1992).
[CrossRef]

P. Simonet, M. C. W. Campbell, “The optical tranverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

P. Simonet, M. C. W. Campbell, “Effect of luminance on the directions of chromostereopsis and transverse chromatic aberration observed with natural pupils,” Ophthalmic Physiol. Opt. 10, 271–279 (1990).
[CrossRef] [PubMed]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Strang, N. C.

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res.35, (to be published).
[PubMed]

Sundet, J. M.

J. M. Sundet, “Effects of color on perceived depth (review of experiments and evaluation of theories),” Scand. J. Psychol. 19, 133–143 (1978).
[CrossRef]

J. M. Sundet, “The effect of pupil size variations in the color stereoscopic phenomenon,” Vision Res. 12, 1027–1032 (1972).
[CrossRef] [PubMed]

Thibos, L.

A. Bradley, L. Thibos, X. X. Zhang, M. Ye, “The effects of ocular chromatic aberration on visual performance for displayed achromatic and chromatic information,” in Society for Information Display International Symposium Digests (Society for Information Display, Anaheim, Calif., 1991), pp. 304–307.

Thibos, L. N.

L. N. Thibos, M. Ye, X. X. Zhang, A. B. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “The effect of pupil size on chromostereopsis and chromatic diplopia: interaction between the Stiles–Crawford effect and chromatic aberrations,” Vision Res. 32, 2121–2128 (1992).
[CrossRef] [PubMed]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “Interocular differences in transverse chromatic aberration determine chromostereopsis for small pupils,” Vision Res. 31, 1787–1796 (1991).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
[CrossRef] [PubMed]

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res.35, (to be published).
[PubMed]

van Meeteren, A.

A. van Meeteren, C. J. W. Dunnewold, “Image quality of the human eye for eccentric pupils,” Vision Res. 23, 573–579 (1983).
[CrossRef]

Verhoeff, F. H.

F. H. Verhoeff, “An optical illusion due to chromatic aberration,” Am. J. Ophthalmol. 11, 898–900 (1928).

Vos, J. J.

Walsh, G.

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

Wilson, M. A.

M. A. Wilson, M. C. W. Campbell, P. Simonet, “Change of pupil centration with change of illumination and pupil size,” Optom. Vision Sci. 69, 129–136 (1992).
[CrossRef]

Winn, B.

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res.35, (to be published).
[PubMed]

Yamade, S.

J. M. Enoch, R. D. Hamer, V. Lakshminarayanan, T. Yasuma, D. G. Birch, S. Yamade, “Effect of monocular light exclusion on the Stiles–Crawford effect,” Vision Res. 27, 507–510 (1987).
[CrossRef]

Yasuma, T.

J. M. Enoch, R. D. Hamer, V. Lakshminarayanan, T. Yasuma, D. G. Birch, S. Yamade, “Effect of monocular light exclusion on the Stiles–Crawford effect,” Vision Res. 27, 507–510 (1987).
[CrossRef]

Ye, M.

L. N. Thibos, M. Ye, X. X. Zhang, A. B. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “The effect of pupil size on chromostereopsis and chromatic diplopia: interaction between the Stiles–Crawford effect and chromatic aberrations,” Vision Res. 32, 2121–2128 (1992).
[CrossRef] [PubMed]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “Interocular differences in transverse chromatic aberration determine chromostereopsis for small pupils,” Vision Res. 31, 1787–1796 (1991).
[CrossRef] [PubMed]

A. Bradley, L. Thibos, X. X. Zhang, M. Ye, “The effects of ocular chromatic aberration on visual performance for displayed achromatic and chromatic information,” in Society for Information Display International Symposium Digests (Society for Information Display, Anaheim, Calif., 1991), pp. 304–307.

Zhang, X.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Zhang, X. X.

L. N. Thibos, M. Ye, X. X. Zhang, A. B. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “The effect of pupil size on chromostereopsis and chromatic diplopia: interaction between the Stiles–Crawford effect and chromatic aberrations,” Vision Res. 32, 2121–2128 (1992).
[CrossRef] [PubMed]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “Interocular differences in transverse chromatic aberration determine chromostereopsis for small pupils,” Vision Res. 31, 1787–1796 (1991).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

A. Bradley, L. Thibos, X. X. Zhang, M. Ye, “The effects of ocular chromatic aberration on visual performance for displayed achromatic and chromatic information,” in Society for Information Display International Symposium Digests (Society for Information Display, Anaheim, Calif., 1991), pp. 304–307.

X. X. Zhang, Ocular Chromatic Aberrations and Their Effect on Polychromatic Retinal Image Quality, Ph.D. dissertation (UMI 9109796, Indiana University, Bloomington, Ind., 1990).

Am. J. Ophthalmol. (2)

H. E. Cross, “Ectopia lentis et pupillae,” Am. J. Ophthalmol. 88, 381–384 (1979).
[PubMed]

F. H. Verhoeff, “An optical illusion due to chromatic aberration,” Am. J. Ophthalmol. 11, 898–900 (1928).

Appl. Opt. (1)

Arch. Ophthalmol. (1)

J. M. Enoch, A. Eisner, H. E. Bedell, “Further evaluation of an apparent failure of the photoreceptor alignment mechanism in a human observer,” Arch. Ophthalmol. 100, 1280–1281 (1982).
[CrossRef] [PubMed]

Invest. Ophthalmol. (1)

J. M. Enoch, G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol. 12, 497–503 (1973).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

R. A. Applegate, A. B. Bonds, “Induced movement of receptor alignment toward a new pupillary aperture,” Invest. Ophthalmol. Vis. Sci. 21, 869–873 (1981).
[PubMed]

R. A. Applegate, A. J. Adams, A. Bradley, A. Eisner, “Total occlusion does not disrupt photoreceptor alignment,” Invest. Ophthalmol. Vis. Sci. 27, 441–443 (1986).
[PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

J. Physiol. (London) (1)

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. (London) 192, 345–358 (1967).

Ophthalmic Physiol. Opt. (2)

P. Simonet, M. C. W. Campbell, “Effect of luminance on the directions of chromostereopsis and transverse chromatic aberration observed with natural pupils,” Ophthalmic Physiol. Opt. 10, 271–279 (1990).
[CrossRef] [PubMed]

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4, 223–226 (1984).
[CrossRef] [PubMed]

Optom. Vision Sci. (3)

L. N. Thibos, A. Bradley, X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

A. Bradley, “Perceptual manifestations of imperfect optics in the human eye: attempts to correct for ocular chromatic aberration,” Optom. Vision Sci. 69, 515–521 (1992).
[CrossRef]

M. A. Wilson, M. C. W. Campbell, P. Simonet, “Change of pupil centration with change of illumination and pupil size,” Optom. Vision Sci. 69, 129–136 (1992).
[CrossRef]

Philos. Trans. R. Soc. B (1)

J. M. Enoch, D. G. Birch, “Inferred positive phototropic activity in the human eye,” Philos. Trans. R. Soc. B 291, 293–303 (1981).
[CrossRef]

Scand. J. Psychol. (1)

J. M. Sundet, “Effects of color on perceived depth (review of experiments and evaluation of theories),” Scand. J. Psychol. 19, 133–143 (1978).
[CrossRef]

Science (1)

J. M. Enoch, D. G. Birch, E. E. Birch, “Monocular light exclusion for a period of days reduces directional sensitivity of the human retina,” Science 206, 705–707 (1979).
[CrossRef] [PubMed]

Vision Res. (11)

J. M. Enoch, R. D. Hamer, V. Lakshminarayanan, T. Yasuma, D. G. Birch, S. Yamade, “Effect of monocular light exclusion on the Stiles–Crawford effect,” Vision Res. 27, 507–510 (1987).
[CrossRef]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “Interocular differences in transverse chromatic aberration determine chromostereopsis for small pupils,” Vision Res. 31, 1787–1796 (1991).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

B. N. Kishto, “The colour stereoscopic effect,” Vision Res. 5, 313–329 (1965).
[CrossRef]

J. M. Sundet, “The effect of pupil size variations in the color stereoscopic phenomenon,” Vision Res. 12, 1027–1032 (1972).
[CrossRef] [PubMed]

J. Faubert, “Seeing depth in colour: more than just what meets the eyes,” Vision Res. 34, 1165–1186 (1994).
[CrossRef] [PubMed]

A. van Meeteren, C. J. W. Dunnewold, “Image quality of the human eye for eccentric pupils,” Vision Res. 23, 573–579 (1983).
[CrossRef]

J. J. Vos, “The color stereoscopic effect,” Vision Res. 6, 105–107 (1966).
[CrossRef] [PubMed]

M. Ye, A. Bradley, L. N. Thibos, X. X. Zhang, “The effect of pupil size on chromostereopsis and chromatic diplopia: interaction between the Stiles–Crawford effect and chromatic aberrations,” Vision Res. 32, 2121–2128 (1992).
[CrossRef] [PubMed]

P. Simonet, M. C. W. Campbell, “The optical tranverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Other (9)

X. X. Zhang, Ocular Chromatic Aberrations and Their Effect on Polychromatic Retinal Image Quality, Ph.D. dissertation (UMI 9109796, Indiana University, Bloomington, Ind., 1990).

A. Bradley, L. Thibos, X. X. Zhang, M. Ye, “The effects of ocular chromatic aberration on visual performance for displayed achromatic and chromatic information,” in Society for Information Display International Symposium Digests (Society for Information Display, Anaheim, Calif., 1991), pp. 304–307.

W. N. Charman, “The retinal image in the human eye,” in Progress in Retinal Research, N. N. Osborne, G. J. Chader, eds. (Pergamon, Oxford, 1983), pp. 1–50.
[CrossRef]

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics, 1st ed. (Butterworths, London, 1984).

M. H. Freeman, Optics, 10th ed. (Butterworths, London, 1990).

I. E. Loewenfeld, The Pupil, 1st ed. (Wayne State U. Press, Detroit, Mich., 1993), Vol. 1.

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res.35, (to be published).
[PubMed]

T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 2nd ed. (Wiley, New York, 1971).

W. J. Krzanowski, Principles of Multivariate Analysis (Clarendon, Oxford, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Visual stimuli used to measure TCA. Stimuli were based on Wratten filters (A, B) or on a red–green–blue (RGB) computer monitor (C, D). Top row, target; bottom row, subjective appearance of the target. A, Physical configuration of strips of red (hatched) or blue (stippled) filter on an opaque mask. B, Subjective appearance of target A when it is viewed through an artificial pupil displaced up and to the right with respect to the visual axis. C, Physical location of black bars on colored backgrounds required so that they will appear to be aligned. D, Subjective appearance of target C when it is viewed through an aperture displaced up and to the right. These drawings are not to scale.

Fig. 2
Fig. 2

Experimental apparatus. The pupil and the lids were monitored with a video camera and with a semitransparent mirror S. Myopic subjects required refractive correction with achromatic lens F, masked by aperture A. Viewing distance for the stimulus was 5 m.

Fig. 3
Fig. 3

Scatterplot and frequency histograms of the distribution of foveal sTCA measured in the left and the right eyes of 85 normal, healthy individuals. Covariance matrix for the pooled data set is inset on the upper left (correlation coefficient, 0.21). Means and sd’s of the vertical and the horizontal components of sTCA are given separately for the two eyes in the table on the lower right. The ellipse is centered on the mean and encompasses 50% of the probability of a bivariate Gaussian function fitted to the data.

Fig. 4
Fig. 4

Distribution of the magnitude of TCA as derived from the two-dimensional scatterplot shown in Fig. 3. The experimental distribution is well described by a theoretical Rayleigh distribution of the same mean and sd as the empirical data.

Fig. 5
Fig. 5

Comparison of two methods for determining the sign of sTCA. V & H, vertical and horizontal. Column and row headings indicate the sign of the sTCA measured with the TCA detector and the computer method, respectively.

Fig. 6
Fig. 6

Repeatability of measurements of the horizontal component of TCA. From participants in the main experiment (trial 1), 22 individuals were randomly selected for a second set of measurements taken several weeks later (trial 2). The diagonal reference line has unity slope and passes through the origin. The inset shows the frequency distribution of the difference between the first and the second measurements of sTCA (mean, − 0.10; sd, 0.49).

Fig. 7
Fig. 7

Distribution of pupil displacement from the visual axis (lower and left-hand axes) and distribution of angle ψ (angle between the visual and the achromatic axes of the eye; upper and right-hand axes) inferred from data shown in Fig. 3. The ellipse encompasses half the data points.

Fig. 8
Fig. 8

Frequency distribution of the computed binocular disparity for red and blue targets (T) displayed on computer monitor. The disparity was calculated as the sum of monocular sTCA for the left (L) and the right (R) eye of each individual. Positive values of disparity correspond to bitemporal displacement of the pupils, which causes the apparent location of the red target (◦) to be closer than the blue target (●), as illustrated. The solid lines indicate refracted light rays; the dashed lines, projection of retinal images through the nodal point N into object space. Negative values of disparity correspond to binasal displacement of the pupils, which causes blue targets to appear closer than red ones.

Tables (1)

Tables Icon

Table 1 Distribution of Sign of sTCA

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ R = TCA pupil displacement .
sin ( ψ ) = pupil displacement N P ,
ψ = TCA Δ R ( N P ) .

Metrics