Abstract

We have developed an imaging reflectometer to measure cone-photoreceptor alignment. One makes measurements by bleaching the cone photopigment and imaging the distribution of light returning from the retina, which is illuminated from a small source imaged in the plane of the eye’s pupil. If the source is near the optimal entry pupil position as determined psychophysically, the distribution of light returning from the retina is peaked, and the magnitude of the peak depends on the location of the source in the pupil of the eye. If the source is far from the optimal entry pupil position, then there is no measurable peak. The location of the peak varies across individuals and coincides with the reported location of best visibility of the measuring light and with previous psychophysical and reflectometric measurements of the Stiles–Crawford peak. The source of this directionality must arise either from the photoreceptors or from behind the photoreceptors because the peak is not present if measurements are made when the cone photopigments have high optical density.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation,” Invest. Ophthalmol. Vis. Sci. 10, 69–77 (1971).
  2. A. W. Snyder, C. Pask, “The Stiles–Crawford effect —explanations and consequences,” Vision Res. 13, 1115–1137 (1973).
    [CrossRef] [PubMed]
  3. M. Mino, Y. Okano, “Improvement in the OTF of a defocused optical system through the use of shaded apertures,” Appl. Opt. 10, 2219–2225 (1971).
    [CrossRef] [PubMed]
  4. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).
  5. G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1044 (1962).
    [CrossRef] [PubMed]
  6. F. Fankhauser, J. M. Enoch, P. Cibis, “Receptor orientation in retinal pathology,” Am. J. Ophthalmol. 52, 767–783 (1961).
  7. J. E. E. Keunen, V. C. Smith, J. Pokorny, M. B. Mets, “Stiles–Crawford effect and color matching in Stargardt’s disease,” Am. J. Ophthalmol. 112, 216–217 (1991).
    [PubMed]
  8. P. H. Morse, V. C. Smith, J. Pokorny, J. V. Burch, “Fundus flavimaculatus with cystoid macular changes and abnormal Stiles–Crawford effect,” Am. J. Ophthalmol. 91, 190–196 (1981).
    [PubMed]
  9. V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and the Stiles–Crawford effect in observers with early age-related macular changes,” J. Opt. Soc. Am. A 5, 2113–2121 (1988).
    [CrossRef] [PubMed]
  10. D. G. Birch, M. A. Sandberg, E. L. Berson, “The Stiles–Crawford effect in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 22, 157–164 (1982).
    [PubMed]
  11. B. H. Crawford, “The Stiles–Crawford effects and their significance in vision,” in Visual Psychophysics, Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), Vol. 7.
    [CrossRef]
  12. V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).
  13. J. M. Enoch, J. A. van Loo, E. Okun, “Realignment of photoreceptors in orientation secondary to retinal detachment.” Invest. Ophthalmol. Vis. Sci. 12, 849–853 (1973).
  14. N. Bulow, “Light scattering by pigment epithelium granules in the human retina,” Acta Ophthalmol. 46, 1048–1053 (1968).
  15. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]
  16. A. E. Elsner, S. A. Burns, G. W. Hughes, R. H. Webb, “Reflectometry with a scanning laser ophthalmoscope,” Appl. Opt. 31, 3697–3710 (1992).
    [CrossRef] [PubMed]
  17. P. E. Kilbride, K. M. Keehan, “Visual pigments in the human macula assessed by imaging fundus reflectometry,” Appl. Opt. 29, 1427–1435 (1990).
    [CrossRef] [PubMed]
  18. D. V. Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
    [CrossRef] [PubMed]
  19. J.-M. Gorrand, F. C. Delori, D. M. Snodderly, “Specular reflection from the fovea,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 366 (1989).
  20. D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980).
    [PubMed]
  21. The interactions are considerably more complex than this simple model suggests. See Ref. 15.
  22. J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” Excerpta Med. Int. Congr. Ser. (1965).
  23. G. J. van Blokland, “Directionality and alignment of the foveal receptors assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
    [CrossRef]
  24. G. J. van Blokland, D. V. Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
    [CrossRef] [PubMed]
  25. J.-M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
    [CrossRef] [PubMed]
  26. J.-M. Gorrand, F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 425 (1990).
  27. J.-M. Gorrand, “Directional effects of the retina appearing in the aerial image,” J. Opt. 16, 279–287 (1985).
    [CrossRef]
  28. W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
    [CrossRef]
  29. W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
    [CrossRef]
  30. A. Safir, L. Hyams, “Distribution of cone orientations as an explanation of the Stiles–Crawford effect,” J. Opt. Soc. Am. 59, 757–765 (1969).
    [CrossRef] [PubMed]
  31. R. A. Applegate, V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 1611–1623 (1993).
    [CrossRef] [PubMed]
  32. A. G. Bennett, J. L. Francis, “The eye as an optical system,” in The Eye, H. Davson, ed. 2nd ed. (Academic, New York, 1962), Vol. 8, pp. 101–131.
  33. “American National Standards for safe use of lasers,” in ANSI 136 1-1993 (revision of ANSI 136 1-1986; Laser Institute of America, Orlando, Fla., 1993).
  34. D. R. Williams, D. H. Brainard, M. J. McMahon, R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
    [CrossRef]
  35. H. D. Baker, A. J. Watson, D. C. Coile, “Experimental stray light in retinal densitometry,” Vis. Neurosci. 6, 615–620 (1991).
    [CrossRef] [PubMed]
  36. D. V. Norren, J. van der Kraats, “A continuously recording retinal densitometer,” Vision Res. 21, 897–905 (1981).
    [CrossRef] [PubMed]
  37. W. A. H. Rushton, G. H. Henry, “Bleaching and regeneration of cone pigments in man,” Vision Res. 8, 617–631 (1968).
    [CrossRef] [PubMed]
  38. V. C. Smith, J. Pokorny, D. V. Norren, “Densitometric measurement of human cone photopigment kinetics,” Vision Res. 23, 517–524 (1983).
    [CrossRef] [PubMed]
  39. A. E. Elsner, S. A. Burns, R. H. Webb, “Mapping cone pigment optical density in humans,” J. Opt. Soc. Am. A 10, 52–58 (1993).
    [CrossRef] [PubMed]
  40. G. J. van Blokland, “The optics of the human eye with respect to polarized light,” Ph.D. dissertation (Univ. of Utrecht, Utrecht, The Netherlands, 1986).
  41. S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual SystemVol. 1 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 160–163.
  42. B. Chen, W. Makous, “Light capture by human cones,” J. Physiol. (London) 414, 89–109 (1989).
  43. D. I. A. MacLeod, “Directionally selective light adaptation a visual consequence of receptor disarray?” Vision Res. 14, 369–378 (1974).
    [CrossRef] [PubMed]

1995 (1)

J.-M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

1992 (1)

1991 (2)

H. D. Baker, A. J. Watson, D. C. Coile, “Experimental stray light in retinal densitometry,” Vis. Neurosci. 6, 615–620 (1991).
[CrossRef] [PubMed]

J. E. E. Keunen, V. C. Smith, J. Pokorny, M. B. Mets, “Stiles–Crawford effect and color matching in Stargardt’s disease,” Am. J. Ophthalmol. 112, 216–217 (1991).
[PubMed]

1990 (2)

J.-M. Gorrand, F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 425 (1990).

P. E. Kilbride, K. M. Keehan, “Visual pigments in the human macula assessed by imaging fundus reflectometry,” Appl. Opt. 29, 1427–1435 (1990).
[CrossRef] [PubMed]

1989 (3)

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

B. Chen, W. Makous, “Light capture by human cones,” J. Physiol. (London) 414, 89–109 (1989).

J.-M. Gorrand, F. C. Delori, D. M. Snodderly, “Specular reflection from the fovea,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 366 (1989).

1988 (1)

1986 (3)

G. J. van Blokland, “Directionality and alignment of the foveal receptors assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef]

G. J. van Blokland, D. V. Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

D. V. Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

1985 (1)

J.-M. Gorrand, “Directional effects of the retina appearing in the aerial image,” J. Opt. 16, 279–287 (1985).
[CrossRef]

1983 (1)

V. C. Smith, J. Pokorny, D. V. Norren, “Densitometric measurement of human cone photopigment kinetics,” Vision Res. 23, 517–524 (1983).
[CrossRef] [PubMed]

1982 (1)

D. G. Birch, M. A. Sandberg, E. L. Berson, “The Stiles–Crawford effect in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 22, 157–164 (1982).
[PubMed]

1981 (2)

P. H. Morse, V. C. Smith, J. Pokorny, J. V. Burch, “Fundus flavimaculatus with cystoid macular changes and abnormal Stiles–Crawford effect,” Am. J. Ophthalmol. 91, 190–196 (1981).
[PubMed]

D. V. Norren, J. van der Kraats, “A continuously recording retinal densitometer,” Vision Res. 21, 897–905 (1981).
[CrossRef] [PubMed]

1980 (1)

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980).
[PubMed]

1978 (1)

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).

1974 (1)

D. I. A. MacLeod, “Directionally selective light adaptation a visual consequence of receptor disarray?” Vision Res. 14, 369–378 (1974).
[CrossRef] [PubMed]

1973 (2)

J. M. Enoch, J. A. van Loo, E. Okun, “Realignment of photoreceptors in orientation secondary to retinal detachment.” Invest. Ophthalmol. Vis. Sci. 12, 849–853 (1973).

A. W. Snyder, C. Pask, “The Stiles–Crawford effect —explanations and consequences,” Vision Res. 13, 1115–1137 (1973).
[CrossRef] [PubMed]

1971 (2)

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation,” Invest. Ophthalmol. Vis. Sci. 10, 69–77 (1971).

M. Mino, Y. Okano, “Improvement in the OTF of a defocused optical system through the use of shaded apertures,” Appl. Opt. 10, 2219–2225 (1971).
[CrossRef] [PubMed]

1969 (1)

1968 (2)

W. A. H. Rushton, G. H. Henry, “Bleaching and regeneration of cone pigments in man,” Vision Res. 8, 617–631 (1968).
[CrossRef] [PubMed]

N. Bulow, “Light scattering by pigment epithelium granules in the human retina,” Acta Ophthalmol. 46, 1048–1053 (1968).

1966 (1)

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

1965 (1)

J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” Excerpta Med. Int. Congr. Ser. (1965).

1962 (1)

1961 (1)

F. Fankhauser, J. M. Enoch, P. Cibis, “Receptor orientation in retinal pathology,” Am. J. Ophthalmol. 52, 767–783 (1961).

1937 (1)

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
[CrossRef]

1933 (1)

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

Applegate, R. A.

Baker, H. D.

H. D. Baker, A. J. Watson, D. C. Coile, “Experimental stray light in retinal densitometry,” Vis. Neurosci. 6, 615–620 (1991).
[CrossRef] [PubMed]

Bennett, A. G.

A. G. Bennett, J. L. Francis, “The eye as an optical system,” in The Eye, H. Davson, ed. 2nd ed. (Academic, New York, 1962), Vol. 8, pp. 101–131.

Berson, E. L.

D. G. Birch, M. A. Sandberg, E. L. Berson, “The Stiles–Crawford effect in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 22, 157–164 (1982).
[PubMed]

Birch, D. G.

D. G. Birch, M. A. Sandberg, E. L. Berson, “The Stiles–Crawford effect in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 22, 157–164 (1982).
[PubMed]

Brainard, D. H.

Bulow, N.

N. Bulow, “Light scattering by pigment epithelium granules in the human retina,” Acta Ophthalmol. 46, 1048–1053 (1968).

Burch, J. V.

P. H. Morse, V. C. Smith, J. Pokorny, J. V. Burch, “Fundus flavimaculatus with cystoid macular changes and abnormal Stiles–Crawford effect,” Am. J. Ophthalmol. 91, 190–196 (1981).
[PubMed]

Burns, S. A.

A. E. Elsner, S. A. Burns, R. H. Webb, “Mapping cone pigment optical density in humans,” J. Opt. Soc. Am. A 10, 52–58 (1993).
[CrossRef] [PubMed]

A. E. Elsner, S. A. Burns, G. W. Hughes, R. H. Webb, “Reflectometry with a scanning laser ophthalmoscope,” Appl. Opt. 31, 3697–3710 (1992).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual SystemVol. 1 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 160–163.

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1044 (1962).
[CrossRef] [PubMed]

Chen, B.

B. Chen, W. Makous, “Light capture by human cones,” J. Physiol. (London) 414, 89–109 (1989).

Cibis, P.

F. Fankhauser, J. M. Enoch, P. Cibis, “Receptor orientation in retinal pathology,” Am. J. Ophthalmol. 52, 767–783 (1961).

Coile, D. C.

H. D. Baker, A. J. Watson, D. C. Coile, “Experimental stray light in retinal densitometry,” Vis. Neurosci. 6, 615–620 (1991).
[CrossRef] [PubMed]

Crawford, B. H.

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

B. H. Crawford, “The Stiles–Crawford effects and their significance in vision,” in Visual Psychophysics, Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), Vol. 7.
[CrossRef]

Delori, F. C.

J.-M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

J.-M. Gorrand, F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 425 (1990).

J.-M. Gorrand, F. C. Delori, D. M. Snodderly, “Specular reflection from the fovea,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 366 (1989).

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual SystemVol. 1 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 160–163.

Diddie, K. R.

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and the Stiles–Crawford effect in observers with early age-related macular changes,” J. Opt. Soc. Am. A 5, 2113–2121 (1988).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).

Elsner, A. E.

A. E. Elsner, S. A. Burns, R. H. Webb, “Mapping cone pigment optical density in humans,” J. Opt. Soc. Am. A 10, 52–58 (1993).
[CrossRef] [PubMed]

A. E. Elsner, S. A. Burns, G. W. Hughes, R. H. Webb, “Reflectometry with a scanning laser ophthalmoscope,” Appl. Opt. 31, 3697–3710 (1992).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual SystemVol. 1 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 160–163.

Enoch, J. M.

J. M. Enoch, J. A. van Loo, E. Okun, “Realignment of photoreceptors in orientation secondary to retinal detachment.” Invest. Ophthalmol. Vis. Sci. 12, 849–853 (1973).

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation,” Invest. Ophthalmol. Vis. Sci. 10, 69–77 (1971).

F. Fankhauser, J. M. Enoch, P. Cibis, “Receptor orientation in retinal pathology,” Am. J. Ophthalmol. 52, 767–783 (1961).

Fankhauser, F.

F. Fankhauser, J. M. Enoch, P. Cibis, “Receptor orientation in retinal pathology,” Am. J. Ophthalmol. 52, 767–783 (1961).

Francis, J. L.

A. G. Bennett, J. L. Francis, “The eye as an optical system,” in The Eye, H. Davson, ed. 2nd ed. (Academic, New York, 1962), Vol. 8, pp. 101–131.

Gorrand, J.-M.

J.-M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

J.-M. Gorrand, F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 425 (1990).

J.-M. Gorrand, F. C. Delori, D. M. Snodderly, “Specular reflection from the fovea,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 366 (1989).

J.-M. Gorrand, “Directional effects of the retina appearing in the aerial image,” J. Opt. 16, 279–287 (1985).
[CrossRef]

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual SystemVol. 1 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 160–163.

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

Henry, G. H.

W. A. H. Rushton, G. H. Henry, “Bleaching and regeneration of cone pigments in man,” Vision Res. 8, 617–631 (1968).
[CrossRef] [PubMed]

Hughes, G. W.

Hyams, L.

Keehan, K. M.

Keunen, J. E. E.

J. E. E. Keunen, V. C. Smith, J. Pokorny, M. B. Mets, “Stiles–Crawford effect and color matching in Stargardt’s disease,” Am. J. Ophthalmol. 112, 216–217 (1991).
[PubMed]

Kilbride, P. E.

Krauskopf, J.

J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” Excerpta Med. Int. Congr. Ser. (1965).

Kreitz, M. R.

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual SystemVol. 1 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 160–163.

Lakshminarayanan, V.

Laties, A. M.

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation,” Invest. Ophthalmol. Vis. Sci. 10, 69–77 (1971).

MacLeod, D. I. A.

D. I. A. MacLeod, “Directionally selective light adaptation a visual consequence of receptor disarray?” Vision Res. 14, 369–378 (1974).
[CrossRef] [PubMed]

Makous, W.

B. Chen, W. Makous, “Light capture by human cones,” J. Physiol. (London) 414, 89–109 (1989).

McMahon, M. J.

Mets, M. B.

J. E. E. Keunen, V. C. Smith, J. Pokorny, M. B. Mets, “Stiles–Crawford effect and color matching in Stargardt’s disease,” Am. J. Ophthalmol. 112, 216–217 (1991).
[PubMed]

Mino, M.

Morse, P. H.

P. H. Morse, V. C. Smith, J. Pokorny, J. V. Burch, “Fundus flavimaculatus with cystoid macular changes and abnormal Stiles–Crawford effect,” Am. J. Ophthalmol. 91, 190–196 (1981).
[PubMed]

Navarro, R.

Norren, D. V.

D. V. Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

G. J. van Blokland, D. V. Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, D. V. Norren, “Densitometric measurement of human cone photopigment kinetics,” Vision Res. 23, 517–524 (1983).
[CrossRef] [PubMed]

D. V. Norren, J. van der Kraats, “A continuously recording retinal densitometer,” Vision Res. 21, 897–905 (1981).
[CrossRef] [PubMed]

Okano, Y.

Okun, E.

J. M. Enoch, J. A. van Loo, E. Okun, “Realignment of photoreceptors in orientation secondary to retinal detachment.” Invest. Ophthalmol. Vis. Sci. 12, 849–853 (1973).

Pask, C.

A. W. Snyder, C. Pask, “The Stiles–Crawford effect —explanations and consequences,” Vision Res. 13, 1115–1137 (1973).
[CrossRef] [PubMed]

Pflibsen, K. P.

Pokorny, J.

J. E. E. Keunen, V. C. Smith, J. Pokorny, M. B. Mets, “Stiles–Crawford effect and color matching in Stargardt’s disease,” Am. J. Ophthalmol. 112, 216–217 (1991).
[PubMed]

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and the Stiles–Crawford effect in observers with early age-related macular changes,” J. Opt. Soc. Am. A 5, 2113–2121 (1988).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, D. V. Norren, “Densitometric measurement of human cone photopigment kinetics,” Vision Res. 23, 517–524 (1983).
[CrossRef] [PubMed]

P. H. Morse, V. C. Smith, J. Pokorny, J. V. Burch, “Fundus flavimaculatus with cystoid macular changes and abnormal Stiles–Crawford effect,” Am. J. Ophthalmol. 91, 190–196 (1981).
[PubMed]

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).

Rushton, W. A. H.

W. A. H. Rushton, G. H. Henry, “Bleaching and regeneration of cone pigments in man,” Vision Res. 8, 617–631 (1968).
[CrossRef] [PubMed]

Safir, A.

Sandberg, M. A.

D. G. Birch, M. A. Sandberg, E. L. Berson, “The Stiles–Crawford effect in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 22, 157–164 (1982).
[PubMed]

Smith, V. C.

J. E. E. Keunen, V. C. Smith, J. Pokorny, M. B. Mets, “Stiles–Crawford effect and color matching in Stargardt’s disease,” Am. J. Ophthalmol. 112, 216–217 (1991).
[PubMed]

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and the Stiles–Crawford effect in observers with early age-related macular changes,” J. Opt. Soc. Am. A 5, 2113–2121 (1988).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, D. V. Norren, “Densitometric measurement of human cone photopigment kinetics,” Vision Res. 23, 517–524 (1983).
[CrossRef] [PubMed]

P. H. Morse, V. C. Smith, J. Pokorny, J. V. Burch, “Fundus flavimaculatus with cystoid macular changes and abnormal Stiles–Crawford effect,” Am. J. Ophthalmol. 91, 190–196 (1981).
[PubMed]

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).

Snodderly, D. M.

J.-M. Gorrand, F. C. Delori, D. M. Snodderly, “Specular reflection from the fovea,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 366 (1989).

Snyder, A. W.

A. W. Snyder, C. Pask, “The Stiles–Crawford effect —explanations and consequences,” Vision Res. 13, 1115–1137 (1973).
[CrossRef] [PubMed]

Stiles, W. S.

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
[CrossRef]

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

Tiemeijer, L. F.

D. V. Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

van Blokland, G. J.

G. J. van Blokland, “Directionality and alignment of the foveal receptors assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef]

G. J. van Blokland, D. V. Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

G. J. van Blokland, “The optics of the human eye with respect to polarized light,” Ph.D. dissertation (Univ. of Utrecht, Utrecht, The Netherlands, 1986).

van der Kraats, J.

D. V. Norren, J. van der Kraats, “A continuously recording retinal densitometer,” Vision Res. 21, 897–905 (1981).
[CrossRef] [PubMed]

van Loo, J. A.

J. M. Enoch, J. A. van Loo, E. Okun, “Realignment of photoreceptors in orientation secondary to retinal detachment.” Invest. Ophthalmol. Vis. Sci. 12, 849–853 (1973).

Watson, A. J.

H. D. Baker, A. J. Watson, D. C. Coile, “Experimental stray light in retinal densitometry,” Vis. Neurosci. 6, 615–620 (1991).
[CrossRef] [PubMed]

Webb, R. H.

Westheimer, G.

Williams, D. R.

Acta Ophthalmol. (1)

N. Bulow, “Light scattering by pigment epithelium granules in the human retina,” Acta Ophthalmol. 46, 1048–1053 (1968).

Am. J. Ophthalmol. (3)

F. Fankhauser, J. M. Enoch, P. Cibis, “Receptor orientation in retinal pathology,” Am. J. Ophthalmol. 52, 767–783 (1961).

J. E. E. Keunen, V. C. Smith, J. Pokorny, M. B. Mets, “Stiles–Crawford effect and color matching in Stargardt’s disease,” Am. J. Ophthalmol. 112, 216–217 (1991).
[PubMed]

P. H. Morse, V. C. Smith, J. Pokorny, J. V. Burch, “Fundus flavimaculatus with cystoid macular changes and abnormal Stiles–Crawford effect,” Am. J. Ophthalmol. 91, 190–196 (1981).
[PubMed]

Appl. Opt. (4)

Excerpta Med. Int. Congr. Ser. (1)

J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” Excerpta Med. Int. Congr. Ser. (1965).

Invest. Ophthalmol. Vis. Sci. (4)

A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation,” Invest. Ophthalmol. Vis. Sci. 10, 69–77 (1971).

J. M. Enoch, J. A. van Loo, E. Okun, “Realignment of photoreceptors in orientation secondary to retinal detachment.” Invest. Ophthalmol. Vis. Sci. 12, 849–853 (1973).

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980).
[PubMed]

D. G. Birch, M. A. Sandberg, E. L. Berson, “The Stiles–Crawford effect in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 22, 157–164 (1982).
[PubMed]

Invest. Ophthalmol. Vis. Sci. Suppl. (2)

J.-M. Gorrand, F. C. Delori, D. M. Snodderly, “Specular reflection from the fovea,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 366 (1989).

J.-M. Gorrand, F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 425 (1990).

J. Opt. (1)

J.-M. Gorrand, “Directional effects of the retina appearing in the aerial image,” J. Opt. 16, 279–287 (1985).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Physiol. (London) (2)

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

B. Chen, W. Makous, “Light capture by human cones,” J. Physiol. (London) 414, 89–109 (1989).

Mod. Probl. Ophthalmol. (1)

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).

Proc. R. Soc. London Ser. B (2)

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
[CrossRef]

Vis. Neurosci. (1)

H. D. Baker, A. J. Watson, D. C. Coile, “Experimental stray light in retinal densitometry,” Vis. Neurosci. 6, 615–620 (1991).
[CrossRef] [PubMed]

Vision Res. (9)

D. V. Norren, J. van der Kraats, “A continuously recording retinal densitometer,” Vision Res. 21, 897–905 (1981).
[CrossRef] [PubMed]

W. A. H. Rushton, G. H. Henry, “Bleaching and regeneration of cone pigments in man,” Vision Res. 8, 617–631 (1968).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, D. V. Norren, “Densitometric measurement of human cone photopigment kinetics,” Vision Res. 23, 517–524 (1983).
[CrossRef] [PubMed]

G. J. van Blokland, “Directionality and alignment of the foveal receptors assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef]

G. J. van Blokland, D. V. Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

J.-M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

A. W. Snyder, C. Pask, “The Stiles–Crawford effect —explanations and consequences,” Vision Res. 13, 1115–1137 (1973).
[CrossRef] [PubMed]

D. V. Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

D. I. A. MacLeod, “Directionally selective light adaptation a visual consequence of receptor disarray?” Vision Res. 14, 369–378 (1974).
[CrossRef] [PubMed]

Other (6)

G. J. van Blokland, “The optics of the human eye with respect to polarized light,” Ph.D. dissertation (Univ. of Utrecht, Utrecht, The Netherlands, 1986).

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual SystemVol. 1 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 160–163.

A. G. Bennett, J. L. Francis, “The eye as an optical system,” in The Eye, H. Davson, ed. 2nd ed. (Academic, New York, 1962), Vol. 8, pp. 101–131.

“American National Standards for safe use of lasers,” in ANSI 136 1-1993 (revision of ANSI 136 1-1986; Laser Institute of America, Orlando, Fla., 1993).

B. H. Crawford, “The Stiles–Crawford effects and their significance in vision,” in Visual Psychophysics, Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), Vol. 7.
[CrossRef]

The interactions are considerably more complex than this simple model suggests. See Ref. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the concept underlying the method described. A waveguide will re-emit light into the same solid angle for which it accepts light. Thus, if we illuminate a photoreceptor (see inset), light will traverse the outer segment, be scattered near the tip of the outer segment, and be captured again by the outer segment. This light will be guided back toward the pupil when it emerges from the photoreceptor inner segment, producing a directional reflection (guided component). In addition, some light will be scattered such that it is not captured by the outer segments. This light will be more uniformly distributed, and a portion will intercept the pupil, producing a diffuse component to the final image of the pupil.

Fig. 2
Fig. 2

Schematic of the apparatus (see also Subsection 2.A). The apparatus has both an illumination channel (top) and a detection channel (bottom). Light is provided by a 543-nm He–Ne laser. The laser is focused on a spatial filter located in a pupil conjugate plane (P1). Light from the spatial filter is collimated by lens L1, which is mounted on a computer-controlled stage that can be moved orthogonal to the optical path in two dimensions. Lenses L2 and L3 are mounted on a platform that can be translated parallel to the optical path, allowing the experimenter to focus aperture A1 on the subject’s retina. The detection path is arranged similarly, with the surface of the CCD detector located conjugate to the subject’s pupil. The experimenter can move a second platform (P2) on which are mounted apertures A1 and A2 and lens LR. When this platform is moved the two retinal conjugate apertures are moved out of the optical channel, and lens LR is inserted. This places the CCD conjugate to the retina. A calibrated reticle (not shown) is inserted into the optical channel in place of aperture A2, allowing the experimenter to determine the location of the measurement field on the retina. For retinal viewing it is also necessary to insert a pupil conjugate aperture (Ap). This aperture is mounted on a computer-controlled rotary solenoid and serves to block the corneal reflex, permitting higher-contrast views of the retina.

Fig. 3
Fig. 3

Cross section of a single measurement obtained for a pupil entry position near the peak of the photoreceptor alignment distribution. The measured intensities (data points) are plotted for a single horizontal row of pixels. The computer-determined best fit for the same row is also shown (curve). The fit was obtained for the entire two-dimensional array of measurements. The computer-determined amplitudes of the diffuse and guided components of the intensity distributions are shown as horizontal lines. The arrows at the top of the graph indicate the pupil margins. This section was chosen such that it does not include the corneal reflex.

Fig. 4
Fig. 4

Four pupillary images obtained for different pupil entry positions for a single subject. The bright dot, which is most visible in the upper two images, shows the location of the corneal reflex. The centrally located bright spot in each image is the fourth Purkinje image. As the entry position of the illumination light is moved toward the inferior central portion of the pupil (bottom row), the total amount of light returning from the retina increases markedly (bottom right). The increase is sharply peaked when the illumination beam enters through a particular region of the pupil (bottom right). It is not possible to print accurately the total dynamic range of the images; however, all four images were identically scaled and printed.

Fig. 5
Fig. 5

Location in the plane of the pupil of the computer-determined peak of the guided component for the nine subjects whose responses are reported in this study. This location is hypothesized to be the point in the pupil toward which the foveal cone photoreceptors are oriented. Portions of the pupil: S, superior; I, inferior; N, nasal; T, temporal.

Fig. 6
Fig. 6

Comparison of the light distribution measured in the plane of the pupil for identical illumination conditions for a single subject. (a) Dark adapted, (b) bleached. The only difference between these two images is that (a) was obtained after dark adaptation and photopigment regeneration, whereas (b) was obtained after exposure to a bright bleaching light. The bright spot at approximately one o’clock in (a) is the corneal reflex and marks the location at which the measurement light enters the pupil. The fourth Purkinje image is also visible in the center of the pupil. (a) and (b) were identically scaled and printed.

Fig. 7
Fig. 7

Photopigment density difference computed for each point in the pupil from the intensity distributions shown in Fig. 6. The density difference is greatest in the region of the pupil where the bleached reflectance is highest.

Fig. 8
Fig. 8

Effect of changing the angle of a polarizer placed in the detection channel when the retina is illuminated with plane-polarized light. (a) For points near the peak of the guided component of the light there is a large change in reflectance with changes in the angle of the analyzer polarizer (◆). For points farther from the peak of the photoreceptor alignment function there is less light emerging from the pupil, and there is less modulation of the light (▲). Far from the peak (●) there is little variation in the amount of light emerging from the pupil with changes in the angle of the analyzer, which suggests that this component of the light has been depolarized by multiple scattering. (b) Effect of changing the angle of the analyzer for different pupil positions. Data were collected with a longer sampling time and a higher degree of pixel binning (spatial averaging). These data show that the angle for which the minimum amount of light returns to the detector varies across the pupil. This variation is consistent with rotation of the polarized light by the birefringence of the cornea as the light passes through the cornea and back to the detector.

Fig. 9
Fig. 9

Image of the retina of subject SB that was obtained with the current apparatus. The subject is fixating the right-hand edge of the image. The concentric circles and the cross hairs are the image of a reticle located at position Ap. The center of the reticle is optically conjugate to the location of the measurement field.

Fig. 10
Fig. 10

Cross section of the data displayed as an image in Fig. 6. (a) Dark adapted, (b) light adapted. There is a large change in the relative reflectance of the retina with bleaching. This change is largest for a region near the peak of the high-illuminance reflectivity function in (b). Note that the intensities of the first and the fourth Purkinje reflexes are the same in both (a) and (b); they add a constant to the fundus reflectance measured in each image. This added constant will result in a decrease in the computed optical density of photopigments at the location of the reflexes. Similar results were obtained for three other subjects.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L pupil = ( L CCD - L dark ) L white ,
L pupil = B + A 10 - sd ,

Metrics