Abstract

The high-frequency behavior of wave fields in free space is characterized by localization in phase space, exemplified by the description of geometrical optics in which distinct wave vectors are associated with the rays passing through each spatial point. I explore the manifestation of phase-space localization in discrete representations of the wave field, in particular the discrete Fourier transform (DFT) and the Gabor representation. A number of auxiliary concepts, such as spectral truncation, the Lagrange manifold, and the Landau–Pollak (LP) theorem, are described and exploited in the process of understanding the behavior of high-frequency fields, and it is shown that the Lagrange manifold is the source in phase space of the dominant contributions to these discrete representations in a number of specially selected examples. The LP theorem specifies the number of discrete degrees of freedom required for a given field to be approximated to a prescribed accuracy, and the theorem controls both the number of samples for DFT implementation and the number of Gabor coefficients required. The behavior of the Gabor coefficients away from the Lagrange manifold is studied for a Fresnel wave (quadratic phase variation on a line), and it is shown that these coefficients decay exponentially, signifying the localization of the Gabor representation. The number of operations required for computing the Gabor representation is compared with the fast-Fourier-transform (FFT) implementation of the DFT, with the LP dimension used as the common cardinality of the two representations, the result being that the FFT is asymptotically more efficient than the Gabor representation even after one allows for the localization of the latter. However, the Gabor representation can be used in circumstances in which the FFT is inapplicable, when the explicit localization is a significant advantage.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rays, beams and diffraction in a discrete phase space: Wilson bases

John M. Arnold
Opt. Express 10(16) 716-727 (2002)

Phase-space beam summation for time-harmonic radiation from large apertures

B. Z. Steinberg, E. Heyman, and L. B. Felsen
J. Opt. Soc. Am. A 8(1) 41-59 (1991)

Gabor’s signal expansion and the Zak transform

Martin J. Bastiaans
Appl. Opt. 33(23) 5241-5255 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (86)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription