Abstract

We present a color-constancy algorithm that uses quantum-catch data from reflected lights to recover surface reflectance functions and illuminant spectral power distributions. The algorithm recovers both surface and light-source spectral properties simultaneously. The method works in all situations that were handled by the earlier two-stage algorithms of Maloney and Wandell [ J. Opt. Soc. Am. A 3, 29 ( 1986)] and D’Zmura and Iverson [ J. Opt. Soc. Am. A 9, 490 ( 1992); J. Opt. Soc. Am. A 10, 2148, 2166 ( 1993); J. Opt. Soc. Am. A 11, 1970 ( 1994)]. In addition, the method handles problems that lie outside the scope of earlier algorithms. Using this method, a trichromatic visual system can recover, when provided adequate information, spectral descriptions of arbitrarily high accuracy for lights and surfaces. We determine conditions under which bilinear models can be used to recover color properties uniquely with the new procedure, and we formulate an algorithm for checking whether a particular bilinear model provides perfect color constancy. This research extends our analysis of linear methods for color constancy begun earlier [ J. Opt. Soc. Am. A 10, 2148, 2166 ( 1993)].

© 1994 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription