Abstract

A relatively simple model for elucidating the holographic storage mechanism in bleached silver halide recording materials is developed. In this model the storage of holographic gratings includes three separate contributions that are due to silver halide grains, a gelatin matrix, and voids in the gelatin matrix. Linear refractive-index-modulation-versus-exposure responses are assumed for the individual contributions, which are summed to produce the overall diffraction-efficiency (DE)-versus-exposure response. Calculated and experimental results reveal that, through reduction of one or more of the contributions to the holographic storage in a composite emulsion system through chemical means, the maximum achievable DE’s increase and may reach 100% in the case of a homogeneous and lossless phase grating. Specifically, the addition of sulfite or triethanolamine to the processing formulations in a reversal bleach processing procedure or in a silver halide sensitized gelatin procedure had the effect of increasing the experimental DE’s. The corresponding calculated DE-versus-exposure responses indicate that these additives suppressed the gelatin tanning or matrix void contributions.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield, ed., Handbook of Optical Holography (Academic, New York, 1979), Chap. 8 p. 281, and Chap. 9, p. 355.
  2. L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, New York, 1981), Chap. 10 p. 254.
  3. P. Hariharan, Optical Holography (Cambridge U. Press, Cambridge, 1984), Chap. 7 p. 88.
  4. N. J. Phillips, A. A. Ward, R. Cullen, D. Porter, “Advances in holographic bleaches,” Photogr. Sci. Eng. 24, 120–124 (1980).
  5. D. J. Cooke, A. A. Ward, “Reflection-hologram processing for high efficiency in silver-halide emulsions,” Appl. Opt. 23, 934–941 (1984).
    [CrossRef] [PubMed]
  6. V. Weiss, E. Millul, A. A. Friesem, “Photolytically stable bleached silver halide emulsions for holographic recording,” J. Imag. Sci. Technol. 37, 92–96 (1993).
  7. R. L. van Renesse, F. A. J. Bouts, “Efficiency of bleaching agents for holography,” Optik 38, 156–168 (1973).
  8. A. A. Friesem, J. S. Zelenka, “Effects of film nonlinearities in holography,” Appl. Opt. 6, 1755–1759 (1967).
    [CrossRef]
  9. C. W. Slinger, R. R. A. Syms, L. Solymar, “Non linear recording in silver halide planar volume holograms,” Appl. Phys. B 36, 217–224 (1985).
    [CrossRef]
  10. A. A. Ward, L. Solymar, “Diffraction efficiency limitations of holograms recorded in silver-halide emulsions,” Appl. Opt. 28, 1850–1855 (1989).
    [CrossRef] [PubMed]
  11. V. Weiss, Y. Amitai, A. A. Friesem, E. Millul, “Silver halide sensitized gelatin holographic recording materials” in Sixth Meeting in Israel on Optical Engineering,R. Finkler, J. Shamir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1038, 110–114 (1989).
    [CrossRef]
  12. V. Weiss, E. Millul, “Bleached silver halide holographic recording materials,” in Holography Techniques and Applications,W. P. Jueptner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1026, 55–61 (1988).
    [CrossRef]
  13. A. G. Tull, “Tanning development and its application to dye transfer images,” J. Photogr. Sci. 11, 1–26 (1963).
  14. T. H. James, The Theory of the Photographic Process, 4th ed. (Macmillan, New York, 1977), Chap. 15 p. 437, and Chap. 21 p. 609.
  15. R. L. van Renesse, “Scattering properties of fine-grained bleached emulsions,” Photogr. Sci. Eng. 24, 114–119 (1980).
  16. P. Hariharan, “Basic processes involved in the production of bleached holograms,” J. Photogr. Sci. 38, 76–81 (1990).
  17. D. Angell, “Improved diffraction efficiency of silver halide (sensitized) gelatin,” Appl. Opt. 26, 4692–4702 (1987).
    [CrossRef] [PubMed]
  18. W. J. Tomlinson, E. A. Chandross, H. P. Weber, G. D. Aumiler, “Multicomponent photopolymer systems for volume phase holograms and grating devices,” Appl. Opt. 15, 534–541 (1976).
    [CrossRef] [PubMed]
  19. W. J. Tomlinson, E. A. Chandross, “Organic photochemical refractive-index image recording systems,” in Advances in Photochemistry (Wiley, New York, 1980), Vol.12, p. 201.
    [CrossRef]
  20. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  21. R. K. Kostuk, J. W. Goodman, “Refractive index modulation mechanism in bleached silver halide holograms,” Appl. Opt. 30, 369–371 (1991).
    [CrossRef] [PubMed]
  22. S. K. Case, R. Alferness, “Index modulation and spatial harmonic generation in dichromated gelatin films,” Appl. Phys. 10, 41–51 (1976).
    [CrossRef]
  23. R. T. Ingwall, M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer,” Opt. Eng. 28, 586–591 (1989).
    [CrossRef]

1993 (1)

V. Weiss, E. Millul, A. A. Friesem, “Photolytically stable bleached silver halide emulsions for holographic recording,” J. Imag. Sci. Technol. 37, 92–96 (1993).

1991 (1)

1990 (1)

P. Hariharan, “Basic processes involved in the production of bleached holograms,” J. Photogr. Sci. 38, 76–81 (1990).

1989 (2)

R. T. Ingwall, M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer,” Opt. Eng. 28, 586–591 (1989).
[CrossRef]

A. A. Ward, L. Solymar, “Diffraction efficiency limitations of holograms recorded in silver-halide emulsions,” Appl. Opt. 28, 1850–1855 (1989).
[CrossRef] [PubMed]

1987 (1)

1985 (1)

C. W. Slinger, R. R. A. Syms, L. Solymar, “Non linear recording in silver halide planar volume holograms,” Appl. Phys. B 36, 217–224 (1985).
[CrossRef]

1984 (1)

1980 (2)

N. J. Phillips, A. A. Ward, R. Cullen, D. Porter, “Advances in holographic bleaches,” Photogr. Sci. Eng. 24, 120–124 (1980).

R. L. van Renesse, “Scattering properties of fine-grained bleached emulsions,” Photogr. Sci. Eng. 24, 114–119 (1980).

1976 (2)

S. K. Case, R. Alferness, “Index modulation and spatial harmonic generation in dichromated gelatin films,” Appl. Phys. 10, 41–51 (1976).
[CrossRef]

W. J. Tomlinson, E. A. Chandross, H. P. Weber, G. D. Aumiler, “Multicomponent photopolymer systems for volume phase holograms and grating devices,” Appl. Opt. 15, 534–541 (1976).
[CrossRef] [PubMed]

1973 (1)

R. L. van Renesse, F. A. J. Bouts, “Efficiency of bleaching agents for holography,” Optik 38, 156–168 (1973).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

1967 (1)

1963 (1)

A. G. Tull, “Tanning development and its application to dye transfer images,” J. Photogr. Sci. 11, 1–26 (1963).

Alferness, R.

S. K. Case, R. Alferness, “Index modulation and spatial harmonic generation in dichromated gelatin films,” Appl. Phys. 10, 41–51 (1976).
[CrossRef]

Amitai, Y.

V. Weiss, Y. Amitai, A. A. Friesem, E. Millul, “Silver halide sensitized gelatin holographic recording materials” in Sixth Meeting in Israel on Optical Engineering,R. Finkler, J. Shamir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1038, 110–114 (1989).
[CrossRef]

Angell, D.

Aumiler, G. D.

Bouts, F. A. J.

R. L. van Renesse, F. A. J. Bouts, “Efficiency of bleaching agents for holography,” Optik 38, 156–168 (1973).

Case, S. K.

S. K. Case, R. Alferness, “Index modulation and spatial harmonic generation in dichromated gelatin films,” Appl. Phys. 10, 41–51 (1976).
[CrossRef]

Chandross, E. A.

W. J. Tomlinson, E. A. Chandross, H. P. Weber, G. D. Aumiler, “Multicomponent photopolymer systems for volume phase holograms and grating devices,” Appl. Opt. 15, 534–541 (1976).
[CrossRef] [PubMed]

W. J. Tomlinson, E. A. Chandross, “Organic photochemical refractive-index image recording systems,” in Advances in Photochemistry (Wiley, New York, 1980), Vol.12, p. 201.
[CrossRef]

Cooke, D. J.

D. J. Cooke, A. A. Ward, “Reflection-hologram processing for high efficiency in silver-halide emulsions,” Appl. Opt. 23, 934–941 (1984).
[CrossRef] [PubMed]

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, New York, 1981), Chap. 10 p. 254.

Cullen, R.

N. J. Phillips, A. A. Ward, R. Cullen, D. Porter, “Advances in holographic bleaches,” Photogr. Sci. Eng. 24, 120–124 (1980).

Friesem, A. A.

V. Weiss, E. Millul, A. A. Friesem, “Photolytically stable bleached silver halide emulsions for holographic recording,” J. Imag. Sci. Technol. 37, 92–96 (1993).

A. A. Friesem, J. S. Zelenka, “Effects of film nonlinearities in holography,” Appl. Opt. 6, 1755–1759 (1967).
[CrossRef]

V. Weiss, Y. Amitai, A. A. Friesem, E. Millul, “Silver halide sensitized gelatin holographic recording materials” in Sixth Meeting in Israel on Optical Engineering,R. Finkler, J. Shamir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1038, 110–114 (1989).
[CrossRef]

Goodman, J. W.

Hariharan, P.

P. Hariharan, “Basic processes involved in the production of bleached holograms,” J. Photogr. Sci. 38, 76–81 (1990).

P. Hariharan, Optical Holography (Cambridge U. Press, Cambridge, 1984), Chap. 7 p. 88.

Ingwall, R. T.

R. T. Ingwall, M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer,” Opt. Eng. 28, 586–591 (1989).
[CrossRef]

James, T. H.

T. H. James, The Theory of the Photographic Process, 4th ed. (Macmillan, New York, 1977), Chap. 15 p. 437, and Chap. 21 p. 609.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kostuk, R. K.

Millul, E.

V. Weiss, E. Millul, A. A. Friesem, “Photolytically stable bleached silver halide emulsions for holographic recording,” J. Imag. Sci. Technol. 37, 92–96 (1993).

V. Weiss, Y. Amitai, A. A. Friesem, E. Millul, “Silver halide sensitized gelatin holographic recording materials” in Sixth Meeting in Israel on Optical Engineering,R. Finkler, J. Shamir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1038, 110–114 (1989).
[CrossRef]

V. Weiss, E. Millul, “Bleached silver halide holographic recording materials,” in Holography Techniques and Applications,W. P. Jueptner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1026, 55–61 (1988).
[CrossRef]

Phillips, N. J.

N. J. Phillips, A. A. Ward, R. Cullen, D. Porter, “Advances in holographic bleaches,” Photogr. Sci. Eng. 24, 120–124 (1980).

Porter, D.

N. J. Phillips, A. A. Ward, R. Cullen, D. Porter, “Advances in holographic bleaches,” Photogr. Sci. Eng. 24, 120–124 (1980).

Slinger, C. W.

C. W. Slinger, R. R. A. Syms, L. Solymar, “Non linear recording in silver halide planar volume holograms,” Appl. Phys. B 36, 217–224 (1985).
[CrossRef]

Solymar, L.

A. A. Ward, L. Solymar, “Diffraction efficiency limitations of holograms recorded in silver-halide emulsions,” Appl. Opt. 28, 1850–1855 (1989).
[CrossRef] [PubMed]

C. W. Slinger, R. R. A. Syms, L. Solymar, “Non linear recording in silver halide planar volume holograms,” Appl. Phys. B 36, 217–224 (1985).
[CrossRef]

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, New York, 1981), Chap. 10 p. 254.

Syms, R. R. A.

C. W. Slinger, R. R. A. Syms, L. Solymar, “Non linear recording in silver halide planar volume holograms,” Appl. Phys. B 36, 217–224 (1985).
[CrossRef]

Tomlinson, W. J.

W. J. Tomlinson, E. A. Chandross, H. P. Weber, G. D. Aumiler, “Multicomponent photopolymer systems for volume phase holograms and grating devices,” Appl. Opt. 15, 534–541 (1976).
[CrossRef] [PubMed]

W. J. Tomlinson, E. A. Chandross, “Organic photochemical refractive-index image recording systems,” in Advances in Photochemistry (Wiley, New York, 1980), Vol.12, p. 201.
[CrossRef]

Troll, M.

R. T. Ingwall, M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer,” Opt. Eng. 28, 586–591 (1989).
[CrossRef]

Tull, A. G.

A. G. Tull, “Tanning development and its application to dye transfer images,” J. Photogr. Sci. 11, 1–26 (1963).

van Renesse, R. L.

R. L. van Renesse, “Scattering properties of fine-grained bleached emulsions,” Photogr. Sci. Eng. 24, 114–119 (1980).

R. L. van Renesse, F. A. J. Bouts, “Efficiency of bleaching agents for holography,” Optik 38, 156–168 (1973).

Ward, A. A.

Weber, H. P.

Weiss, V.

V. Weiss, E. Millul, A. A. Friesem, “Photolytically stable bleached silver halide emulsions for holographic recording,” J. Imag. Sci. Technol. 37, 92–96 (1993).

V. Weiss, E. Millul, “Bleached silver halide holographic recording materials,” in Holography Techniques and Applications,W. P. Jueptner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1026, 55–61 (1988).
[CrossRef]

V. Weiss, Y. Amitai, A. A. Friesem, E. Millul, “Silver halide sensitized gelatin holographic recording materials” in Sixth Meeting in Israel on Optical Engineering,R. Finkler, J. Shamir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1038, 110–114 (1989).
[CrossRef]

Zelenka, J. S.

Appl. Opt. (6)

Appl. Phys. (1)

S. K. Case, R. Alferness, “Index modulation and spatial harmonic generation in dichromated gelatin films,” Appl. Phys. 10, 41–51 (1976).
[CrossRef]

Appl. Phys. B (1)

C. W. Slinger, R. R. A. Syms, L. Solymar, “Non linear recording in silver halide planar volume holograms,” Appl. Phys. B 36, 217–224 (1985).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Imag. Sci. Technol. (1)

V. Weiss, E. Millul, A. A. Friesem, “Photolytically stable bleached silver halide emulsions for holographic recording,” J. Imag. Sci. Technol. 37, 92–96 (1993).

J. Photogr. Sci. (2)

A. G. Tull, “Tanning development and its application to dye transfer images,” J. Photogr. Sci. 11, 1–26 (1963).

P. Hariharan, “Basic processes involved in the production of bleached holograms,” J. Photogr. Sci. 38, 76–81 (1990).

Opt. Eng. (1)

R. T. Ingwall, M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer,” Opt. Eng. 28, 586–591 (1989).
[CrossRef]

Optik (1)

R. L. van Renesse, F. A. J. Bouts, “Efficiency of bleaching agents for holography,” Optik 38, 156–168 (1973).

Photogr. Sci. Eng. (2)

N. J. Phillips, A. A. Ward, R. Cullen, D. Porter, “Advances in holographic bleaches,” Photogr. Sci. Eng. 24, 120–124 (1980).

R. L. van Renesse, “Scattering properties of fine-grained bleached emulsions,” Photogr. Sci. Eng. 24, 114–119 (1980).

Other (7)

W. J. Tomlinson, E. A. Chandross, “Organic photochemical refractive-index image recording systems,” in Advances in Photochemistry (Wiley, New York, 1980), Vol.12, p. 201.
[CrossRef]

H. J. Caulfield, ed., Handbook of Optical Holography (Academic, New York, 1979), Chap. 8 p. 281, and Chap. 9, p. 355.

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, New York, 1981), Chap. 10 p. 254.

P. Hariharan, Optical Holography (Cambridge U. Press, Cambridge, 1984), Chap. 7 p. 88.

T. H. James, The Theory of the Photographic Process, 4th ed. (Macmillan, New York, 1977), Chap. 15 p. 437, and Chap. 21 p. 609.

V. Weiss, Y. Amitai, A. A. Friesem, E. Millul, “Silver halide sensitized gelatin holographic recording materials” in Sixth Meeting in Israel on Optical Engineering,R. Finkler, J. Shamir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1038, 110–114 (1989).
[CrossRef]

V. Weiss, E. Millul, “Bleached silver halide holographic recording materials,” in Holography Techniques and Applications,W. P. Jueptner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1026, 55–61 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of the principal processing steps of RB and SHSG processing procedures in AgHal emulsions. The steps of the RB procedures are shown in the upper part of the figure; the steps of the SHSG procedure include both the upper and the lower parts. The plot at the bottom depicts the exposure responses of the refractive index for the individual contributions.

Fig. 2
Fig. 2

Refractive-index modulation versus exposure for thick holographic transmission phase gratings recorded in Agfa 8E56 emulsions and processed with the RB processing procedure (see Table 3). The linear responses of the AgHal (Δn1) and gelatin (Δn2) contributions were according Eq. (1), and the composite response (Δntot) is Δntot = Δn1 + Δn2.The parameters in Eq. (1) are γ1 = −2.9 × 10−3 cm2/μJ, γ2 = 1.2 × 10−3 cm2/ μJ,t1 = −t2 = 0.9 × 10−2, Δns1 = −0.095, and Δns2 = 0.055.

Fig. 3
Fig. 3

Calculated DE and normalized experimental DE (circles) versus exposure of holographic transmission gratings, recorded in Agfa 8E56, developed in MAA, and bleached in WM-F1 (see Tables 1 and 3). The calculated DE response (curve) was computed according Eq. (5), by use of the composite refractive-index-modulation-versus-exposure response shown in Fig. 2. The constants in Eq. (5) were T = 5.6 μm, θ = 30°, and λ = 0.514 μm.

Fig. 4
Fig. 4

Calculated and normalized experimental DE (circles) and refractive-index modulation versus exposure of holographic transmission gratings, recorded in Agfa 8E56, developed in MAAS, and bleached in WM-F1. The calculated DE response (solid curve) was computed according Eq. (5) by use of the refractive-index-modulation response that was due to AgHal only (dashed curve). The constants in Eq. (5) were T = 5.6 μm; θ = 30°, and λ = 0.514 μm; parameters are γ1 = −2.8 × 10−3 cm2/μJ, t1 = 2.2 × 10−2, and Δns1 = − 0.108.

Fig. 5
Fig. 5

Refractive-index modulation versus exposure of holographic transmission gratings, recorded in Kodak 649F and processed as SHSG (see Table 4). The linear responses of the gelatin (Δn1) and the matrix void (Δn2) contributions were according Eq. (1), and the composite response (Δntot) is Δntot = Δn1 + Δn2. The parameters in Eq. (1) are γ1 = 1.2 × 10−4 cm2/μJ, γ2 = −2.7 ×10−5 cm2/μJ, t1 = −1.2 × 10−3, t2 = 2.7 × 10−4, Δns1 = 0.036, and Δns2 = −0.008.

Fig. 6
Fig. 6

Calculated DE and normalized experimental DE (circles) versus exposure of holographic transmission gratings, recorded in Kodak 649F and processed as SHSG (see Table 4). The calculated DE response (solid curve) was computed according to Eq. (5) by use of the composite refractive-index-modulation-versus-exposure response (dashed curve). The constants in Eq. (5) were T = 12.6 μm, θ = 15°, and λ = 0.514 μm.

Fig. 7
Fig. 7

Calculated and normalized experimental DE (squares) and refractive-index modulation versus exposure of holographic transmission gratings, recorded in Kodak 649F and processed with SHSG with TEA 10% in the hot-water soak (step 6, Table 4). The calculated DE response (solid curve) was computed according to Eq. (5) by use of the refractive-index-modulation response that was due to gelatin tanning only (dashed curve). The constants in Eq. (5) were T = 12.6 μm, θ = 15°, and λ = 0.514 μm; parameters are γ1 = 1.2 × 10−4 cm2/μJ, t1 = −1.2 × 10−3, and Δns1 = 0.035.

Tables (4)

Tables Icon

Table 1 Developer Composition of CW-C2a MAA,b and MAAS

Tables Icon

Table 2 Bleach Compositions of RB5-2a and WM-F1b

Tables Icon

Table 3 Procedure for Reversal Bleach Processing with Agfa 8E56a

Tables Icon

Table 4 SHSG Processing Procedurea,b

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n i ( p ) = γ i p t i ,
n tot ( x , p ) = n 0 tot ( p ) + 1 / 2 Δ n tot ( p ) cos ( 2 π x / d ) ,
n 0 tot ( p ) = i q i n 0 i ( p ) ,
Δ n tot ( p ) = i Δ n i ( p ) .
η ( p ) = A sin 2 [ π Δ n tot ( p ) T / 2 λ cos θ ] ,
DE ( p ) = I d ( p ) / I t ( p ) cos θ .

Metrics