Abstract

The fractional volume dependence of the extinction rate in dense media is studied. Results from optical scattering experiments are compared with the theoretical extinction rate calculated by independent-scattering theory and the quasi-crystalline approximation (QCA). QCA takes into account the coherent interaction among scatterers in the vicinity of each other, as weighted by a pair distribution function. QCA is shown to be in good agreement with experimental data.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Radiative wave and cyclical transfer equations for dense nontenuous media

Leung Tsang and Akira Ishimaru
J. Opt. Soc. Am. A 2(12) 2187-2193 (1985)

Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries

L. M. Zurk, L. Tsang, K. H. Ding, and D. P. Winebrenner
J. Opt. Soc. Am. A 12(8) 1772-1781 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription