Abstract

Digital signal processing techniques are used to design, analyze, and implement discrete models of polarization dispersion in finite-difference time-domain (FDTD) simulations. These methods are warranted by the extreme importance of dispersion to the propagation behavior of femtosecond-duration optical pulses. Input-invariant and frequency-approximation methods of designing discrete analogs of continuous-time dispersive electromagnetic systems are presented. Our methods are shown to unify existing design techniques. The inherent accuracy of each dispersive design is quantified by truncation error and frequency response methods, and stability analysis of the total FDTD system is found through root locus techniques. Implementation of the design is accomplished by algebraic manipulation of the system function in the frequency domain, resulting in canonical, partial fraction, or cascade structures that minimize the number of stored variables and provide a trade-off between efficiency and sensitivity to finite precision.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials

Indika Udagedara, Malin Premaratne, Ivan D. Rukhlenko, Haroldo T. Hattori, and Govind P. Agrawal
Opt. Express 17(23) 21179-21190 (2009)

Modulational instability in a passive fiber cavity, revisited

D. A. Zezyulin, V. V. Konotop, and M. Taki
Opt. Lett. 36(23) 4623-4625 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (58)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription