H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).

[CrossRef]

D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation. Parts I and II,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).

[CrossRef]

A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).

[CrossRef]

J. C. Wood, D. T. Barry, “Radon transformation of time-frequency distributions for analysis of multicomponent signals,” Proc. Int. Conf. Acoust. Speech Signal Process. 4, 257–261 (1992).

W. Li, “Wigner distribution method equivalent to dechirp method for detecting a chirp signal,” IEEE Trans. Acoust. Speech Signal Process. 35, 1210–1211 (1987).

[CrossRef]

A. C. McBride, F. H. Kerr, “On Namias’ fractional Fourier transforms,” IMA J. Appl. Math. 39, 159–175 (1987).

[CrossRef]

P. Flandrin, “On detection-estimation procedures in the time-frequency plane,” Proc. Int. Conf. Acoust. Speech Signal Process. 4, 2331–2334 (1986).

S. Kay, G. F. Boudreau-Bartels, “On the optimality of the Wigner distribution for detection,” Proc. Int. Conf. Acoust. Speech Signal Process. 3, 1017–1020 (1985).

B. W. Dickinson, K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust. Speech Signal Process. ASSP-30, 25–31 (1982).

[CrossRef]

V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980).

[CrossRef]

N. G. de Bruijn, “A theory of generalized functions with applications to Wigner distribution and Weyl correspondence,” Nieuwe Arch. Wiskunde 21, 205–280 (1973).

L. B. Almeida, “The angular Fourier transform,” submitted to IMA J. Appl. Math and to IEEE Trans. Signal Process.

J. C. Wood, D. T. Barry, “Radon transformation of time-frequency distributions for analysis of multicomponent signals,” Proc. Int. Conf. Acoust. Speech Signal Process. 4, 257–261 (1992).

J. C. Wood, D. T. Barry, “Radon transformation of the Wigner spectrum,” in Advanced Signal Processing, Algorithms, Architectures, and Implementations III, F. T. Luk, ed., Proc. Soc. Photo-Opt. Eng.1770, 358–375 (1992).

[CrossRef]

S. Kay, G. F. Boudreau-Bartels, “On the optimality of the Wigner distribution for detection,” Proc. Int. Conf. Acoust. Speech Signal Process. 3, 1017–1020 (1985).

N. G. de Bruijn, “A theory of generalized functions with applications to Wigner distribution and Weyl correspondence,” Nieuwe Arch. Wiskunde 21, 205–280 (1973).

B. W. Dickinson, K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust. Speech Signal Process. ASSP-30, 25–31 (1982).

[CrossRef]

P. Flandrin, “On detection-estimation procedures in the time-frequency plane,” Proc. Int. Conf. Acoust. Speech Signal Process. 4, 2331–2334 (1986).

S. Kay, G. F. Boudreau-Bartels, “On the optimality of the Wigner distribution for detection,” Proc. Int. Conf. Acoust. Speech Signal Process. 3, 1017–1020 (1985).

A. C. McBride, F. H. Kerr, “On Namias’ fractional Fourier transforms,” IMA J. Appl. Math. 39, 159–175 (1987).

[CrossRef]

W. Li, “Wigner distribution method equivalent to dechirp method for detecting a chirp signal,” IEEE Trans. Acoust. Speech Signal Process. 35, 1210–1211 (1987).

[CrossRef]

A. C. McBride, F. H. Kerr, “On Namias’ fractional Fourier transforms,” IMA J. Appl. Math. 39, 159–175 (1987).

[CrossRef]

V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980).

[CrossRef]

B. W. Dickinson, K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust. Speech Signal Process. ASSP-30, 25–31 (1982).

[CrossRef]

J. C. Wood, D. T. Barry, “Radon transformation of time-frequency distributions for analysis of multicomponent signals,” Proc. Int. Conf. Acoust. Speech Signal Process. 4, 257–261 (1992).

J. C. Wood, D. T. Barry, “Radon transformation of the Wigner spectrum,” in Advanced Signal Processing, Algorithms, Architectures, and Implementations III, F. T. Luk, ed., Proc. Soc. Photo-Opt. Eng.1770, 358–375 (1992).

[CrossRef]

W. Li, “Wigner distribution method equivalent to dechirp method for detecting a chirp signal,” IEEE Trans. Acoust. Speech Signal Process. 35, 1210–1211 (1987).

[CrossRef]

B. W. Dickinson, K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust. Speech Signal Process. ASSP-30, 25–31 (1982).

[CrossRef]

A. C. McBride, F. H. Kerr, “On Namias’ fractional Fourier transforms,” IMA J. Appl. Math. 39, 159–175 (1987).

[CrossRef]

V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980).

[CrossRef]

N. G. de Bruijn, “A theory of generalized functions with applications to Wigner distribution and Weyl correspondence,” Nieuwe Arch. Wiskunde 21, 205–280 (1973).

H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).

[CrossRef]

S. Kay, G. F. Boudreau-Bartels, “On the optimality of the Wigner distribution for detection,” Proc. Int. Conf. Acoust. Speech Signal Process. 3, 1017–1020 (1985).

P. Flandrin, “On detection-estimation procedures in the time-frequency plane,” Proc. Int. Conf. Acoust. Speech Signal Process. 4, 2331–2334 (1986).

J. C. Wood, D. T. Barry, “Radon transformation of time-frequency distributions for analysis of multicomponent signals,” Proc. Int. Conf. Acoust. Speech Signal Process. 4, 257–261 (1992).

J. C. Wood, D. T. Barry, “Radon transformation of the Wigner spectrum,” in Advanced Signal Processing, Algorithms, Architectures, and Implementations III, F. T. Luk, ed., Proc. Soc. Photo-Opt. Eng.1770, 358–375 (1992).

[CrossRef]

L. B. Almeida, “The angular Fourier transform,” submitted to IMA J. Appl. Math and to IEEE Trans. Signal Process.