Abstract

Psychophysical detection and direction discrimination thresholds for 1c/°, 1-Hz Gabors are plotted in a Weberian long–middle-wavelength-sensitive cone contrast plane. The shape of these threshold contours suggests linear cone contributions to additive (ΔL/Lb + ΔM/Mb) and opponent (ΔL/Lb – ΔM/Mb) postreceptoral mechanisms. The opponent mechanism dominates thresholds at the fovea, but sensitivity decreases rapidly with eccentricity in comparison with the additive mechanism. Cone contributions to the mechanisms vary in a small and nonsystematic manner across the retina. The experiments show that the additive mechanism is directionally sensitive at detection threshold. At all eccentricities studied (0–24°), 0.3-log-unit suprathreshold contrasts are necessary for the opponent mechanism to signal direction of motion.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and to adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
    [CrossRef] [PubMed]
  2. C. F. Stromeyer, R. E. Kronauer, G. R. Cole, in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.
  3. G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–50 (1993).
    [CrossRef] [PubMed]
  4. A. Stockman, D. I. A. MacLeod, D. D. De Priest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
    [CrossRef] [PubMed]
  5. V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
    [CrossRef]
  6. P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
    [CrossRef] [PubMed]
  7. P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
    [CrossRef]
  8. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
    [PubMed]
  9. A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
    [CrossRef] [PubMed]
  10. H. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Directionally selective responses of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent colour stimuli,” Exp. Brain Res. 75, 1–14 (1989).
    [CrossRef]
  11. K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
    [CrossRef] [PubMed]
  12. A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
    [CrossRef] [PubMed]
  13. J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
    [CrossRef] [PubMed]
  14. J. Lee, C. F. Stromeyer, “Contribution of human short wave cones to luminance and motion detection,” J. Physiol. 413, 563–593 (1989).
  15. D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
    [CrossRef] [PubMed]
  16. P. Cavanagh, S. Anstis, “The contribution of colour to motion in normal and colour-deficient observers,” Vision Res. 31, 2109–2148 (1991).
    [CrossRef]
  17. K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
    [CrossRef] [PubMed]
  18. A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
    [CrossRef] [PubMed]
  19. L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
    [CrossRef] [PubMed]
  20. A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
    [CrossRef]
  21. G. R. Cole, T. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comput. 24, 22–27 (1992).
    [CrossRef]
  22. A. J. Vingrys, A. B. Metha, D. R. Badcock, “Modelling post receptoral mechanisms in cone contrast space,” Invest. Ophthalmol. Vis. Sci. 34, 750 (1993).
  23. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).For example, see C. F. Stromeyer, J. Lee, R. T. Eskew, “Peripheral chromatic sensitivity for flashes: a post-receptoral red–green asymmetry,” Vision Res. 32, 1865–1873 (1992).
    [CrossRef] [PubMed]
  24. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
    [CrossRef] [PubMed]
  25. R. M. Boynton, D. N. Whitten, “Visual adaptation in monkey cones: recordings of late receptor potentials,” Science 170, 1423–1426 (1970).
    [CrossRef] [PubMed]
  26. A. Eisner, D. I. A. MacLeod, “Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds,” J. Opt. Soc. Am. 71, 705–718 (1981).
    [CrossRef] [PubMed]
  27. J. M. Valeton, D. Van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539–1547 (1983).
    [CrossRef] [PubMed]
  28. R. M. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Ret. Res. 3, 263–346 (1984).
    [CrossRef]
  29. A. B. Poirson, B. A. Wandell, D. C. Varner, D. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
    [CrossRef] [PubMed]
  30. K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–749 (1979).
    [CrossRef] [PubMed]
  31. B. B. Lee, P. R. Martin, A. Valberg, J. Kremers, “Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation,” J. Opt. Soc. Am. A 10, 1403–1412 (1993).These authors have proposed an alternative hypothesis to explain elliptical threshold contours. They argue that the shape of the profile may be inherent in the neural substrate that subserves the task and that contour rounding reflects phase shifts between center and surround inputs. Their single-cell studies indicate that such effects will be most pronounced at high temporal frequencies (>10 Hz).
    [CrossRef] [PubMed]
  32. P. S. Fuhr, T. A. Hershner, K. M. Daum, “Ganzfeld blackout occurs in bowl perimetry and is eliminated by translucent occlusion,” Arch. Ophthalmol. 108, 983–988 (1990).
    [CrossRef] [PubMed]
  33. R. F. Quick, “A vector magnitude model of contrast detection,” Kybernetic 16, 65–67 (1974).
    [CrossRef]
  34. J. P. Thomas, “Detection and identification: how are they related?” J. Opt. Soc. Am. A 2, 1457–1467 (1985).
    [CrossRef] [PubMed]
  35. C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).
  36. The average (±1 SEM) probability summation indices [n of Eq. (2)] over all eccentricities for detection contours were 3.58 ± 0.22 (AM) and 4.35 ± 0.61 (SD). For direction-discrimination contours they were 1.81 ± 0.10 (AM) and 1.89 ± 0.16 (SD). For all threshold contours fitted with the model (Fig. 3), the least χ2values indicate that the model provides a statistically good fit to the data in each case (χ2 < 6.0, df = 7). A student’s t-test shows that the detection contours were significantly nonelliptical (n ≠ 2.0) at p < 0.001 (AM) and p < 0.01 (SD), whereas elliptical contours (n = 2.0) are consistent with the direction data (p > 0.05).
  37. A. J. Vingrys, P. E. King-Smith, “Factors in using colour video monitors for assessment of visual thresholds,” Colour Res. Appl. 11, Suppl. S57–S62 (1986).
  38. C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
    [CrossRef]
  39. For an excellent review, see P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
    [CrossRef] [PubMed]
  40. N. Graham, J. G. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–825 (1978).
    [CrossRef] [PubMed]

1993 (7)

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
[CrossRef]

A. J. Vingrys, A. B. Metha, D. R. Badcock, “Modelling post receptoral mechanisms in cone contrast space,” Invest. Ophthalmol. Vis. Sci. 34, 750 (1993).

G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–50 (1993).
[CrossRef] [PubMed]

For an excellent review, see P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
[CrossRef] [PubMed]

B. B. Lee, P. R. Martin, A. Valberg, J. Kremers, “Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation,” J. Opt. Soc. Am. A 10, 1403–1412 (1993).These authors have proposed an alternative hypothesis to explain elliptical threshold contours. They argue that the shape of the profile may be inherent in the neural substrate that subserves the task and that contour rounding reflects phase shifts between center and surround inputs. Their single-cell studies indicate that such effects will be most pronounced at high temporal frequencies (>10 Hz).
[CrossRef] [PubMed]

1992 (3)

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

G. R. Cole, T. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comput. 24, 22–27 (1992).
[CrossRef]

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

1991 (3)

P. Cavanagh, S. Anstis, “The contribution of colour to motion in normal and colour-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef]

A. Stockman, D. I. A. MacLeod, D. D. De Priest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

1990 (4)

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).

P. S. Fuhr, T. A. Hershner, K. M. Daum, “Ganzfeld blackout occurs in bowl perimetry and is eliminated by translucent occlusion,” Arch. Ophthalmol. 108, 983–988 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, D. C. Varner, D. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

1989 (2)

H. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Directionally selective responses of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent colour stimuli,” Exp. Brain Res. 75, 1–14 (1989).
[CrossRef]

J. Lee, C. F. Stromeyer, “Contribution of human short wave cones to luminance and motion detection,” J. Physiol. 413, 563–593 (1989).

1987 (2)

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[CrossRef]

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

1986 (1)

A. J. Vingrys, P. E. King-Smith, “Factors in using colour video monitors for assessment of visual thresholds,” Colour Res. Appl. 11, Suppl. S57–S62 (1986).

1985 (2)

J. P. Thomas, “Detection and identification: how are they related?” J. Opt. Soc. Am. A 2, 1457–1467 (1985).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

1984 (2)

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

R. M. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Ret. Res. 3, 263–346 (1984).
[CrossRef]

1983 (2)

J. M. Valeton, D. Van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539–1547 (1983).
[CrossRef] [PubMed]

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

1981 (2)

1980 (1)

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

1979 (1)

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–749 (1979).
[CrossRef] [PubMed]

1978 (2)

N. Graham, J. G. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–825 (1978).
[CrossRef] [PubMed]

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

1976 (1)

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).For example, see C. F. Stromeyer, J. Lee, R. T. Eskew, “Peripheral chromatic sensitivity for flashes: a post-receptoral red–green asymmetry,” Vision Res. 32, 1865–1873 (1992).
[CrossRef] [PubMed]

1974 (1)

R. F. Quick, “A vector magnitude model of contrast detection,” Kybernetic 16, 65–67 (1974).
[CrossRef]

1970 (1)

R. M. Boynton, D. N. Whitten, “Visual adaptation in monkey cones: recordings of late receptor potentials,” Science 170, 1423–1426 (1970).
[CrossRef] [PubMed]

Anstis, S.

P. Cavanagh, S. Anstis, “The contribution of colour to motion in normal and colour-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef]

Badcock, D. R.

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
[CrossRef]

A. J. Vingrys, A. B. Metha, D. R. Badcock, “Modelling post receptoral mechanisms in cone contrast space,” Invest. Ophthalmol. Vis. Sci. 34, 750 (1993).

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

Benes, S. C.

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[CrossRef]

Boulton, J. C.

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

Boynton, R. M.

R. M. Boynton, D. N. Whitten, “Visual adaptation in monkey cones: recordings of late receptor potentials,” Science 170, 1423–1426 (1970).
[CrossRef] [PubMed]

Brainard, D.

Carden, D.

Cavanagh, P.

P. Cavanagh, S. Anstis, “The contribution of colour to motion in normal and colour-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef]

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

Cole, G. R.

G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–50 (1993).
[CrossRef] [PubMed]

G. R. Cole, T. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comput. 24, 22–27 (1992).
[CrossRef]

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

Daum, K. M.

P. S. Fuhr, T. A. Hershner, K. M. Daum, “Ganzfeld blackout occurs in bowl perimetry and is eliminated by translucent occlusion,” Arch. Ophthalmol. 108, 983–988 (1990).
[CrossRef] [PubMed]

De Priest, D. D.

A. Stockman, D. I. A. MacLeod, D. D. De Priest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

Derrington, A. M.

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

Eisner, A.

Enroth-Cugell, C.

R. M. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Ret. Res. 3, 263–346 (1984).
[CrossRef]

Eskew, R. T.

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).

Favreau, O. E.

Fuhr, P. S.

P. S. Fuhr, T. A. Hershner, K. M. Daum, “Ganzfeld blackout occurs in bowl perimetry and is eliminated by translucent occlusion,” Arch. Ophthalmol. 108, 983–988 (1990).
[CrossRef] [PubMed]

Graham, N.

N. Graham, J. G. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–825 (1978).
[CrossRef] [PubMed]

Gregory, R. L.

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

Henning, G. B.

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

Hershner, T. A.

P. S. Fuhr, T. A. Hershner, K. M. Daum, “Ganzfeld blackout occurs in bowl perimetry and is eliminated by translucent occlusion,” Arch. Ophthalmol. 108, 983–988 (1990).
[CrossRef] [PubMed]

Heuts, M. J. G.

Hine, T.

G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–50 (1993).
[CrossRef] [PubMed]

G. R. Cole, T. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comput. 24, 22–27 (1992).
[CrossRef]

Hubel, D. H.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

Ingling, C. R.

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

Isono, H.

H. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Directionally selective responses of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent colour stimuli,” Exp. Brain Res. 75, 1–14 (1989).
[CrossRef]

King-Smith, P. E.

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[CrossRef]

A. J. Vingrys, P. E. King-Smith, “Factors in using colour video monitors for assessment of visual thresholds,” Colour Res. Appl. 11, Suppl. S57–S62 (1986).

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–749 (1979).
[CrossRef] [PubMed]

P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and to adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
[CrossRef] [PubMed]

Koenderink, J. J.

Kranda, K.

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–749 (1979).
[CrossRef] [PubMed]

Kremers, J.

Kronauer, R. E.

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

Lee, B. B.

Lee, J.

J. Lee, C. F. Stromeyer, “Contribution of human short wave cones to luminance and motion detection,” J. Physiol. 413, 563–593 (1989).

Lennie, P.

Lindsey, D. T.

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

Livingstone, M. S.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

MacLeod, D. I. A.

A. Stockman, D. I. A. MacLeod, D. D. De Priest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

A. Eisner, D. I. A. MacLeod, “Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds,” J. Opt. Soc. Am. 71, 705–718 (1981).
[CrossRef] [PubMed]

Martin, P. R.

Martinez-Uriegas, E.

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

McIlhagga, W.

Metha, A. B.

A. J. Vingrys, A. B. Metha, D. R. Badcock, “Modelling post receptoral mechanisms in cone contrast space,” Invest. Ophthalmol. Vis. Sci. 34, 750 (1993).

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
[CrossRef]

Mikami, A.

H. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Directionally selective responses of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent colour stimuli,” Exp. Brain Res. 75, 1–14 (1989).
[CrossRef]

Mobley, L. A.

Mullen, K. T.

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

Murphy, B. J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Nachmias, J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

N. Graham, J. G. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–825 (1978).
[CrossRef] [PubMed]

Noorlander, C.

Palmer, J.

Poirson, A. B.

Pokorny, J.

For an excellent review, see P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).For example, see C. F. Stromeyer, J. Lee, R. T. Eskew, “Peripheral chromatic sensitivity for flashes: a post-receptoral red–green asymmetry,” Vision Res. 32, 1865–1873 (1992).
[CrossRef] [PubMed]

Quick, R. F.

R. F. Quick, “A vector magnitude model of contrast detection,” Kybernetic 16, 65–67 (1974).
[CrossRef]

Ramachandran, V. S.

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

Robson, J. G.

N. Graham, J. G. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–825 (1978).
[CrossRef] [PubMed]

Saito, H.

H. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Directionally selective responses of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent colour stimuli,” Exp. Brain Res. 75, 1–14 (1989).
[CrossRef]

Shapley, R. M.

R. M. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Ret. Res. 3, 263–346 (1984).
[CrossRef]

Smith, V. C.

For an excellent review, see P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).For example, see C. F. Stromeyer, J. Lee, R. T. Eskew, “Peripheral chromatic sensitivity for flashes: a post-receptoral red–green asymmetry,” Vision Res. 32, 1865–1873 (1992).
[CrossRef] [PubMed]

Stockman, A.

A. Stockman, D. I. A. MacLeod, D. D. De Priest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

Stone, L.

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

Stromeyer, C. F.

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).

J. Lee, C. F. Stromeyer, “Contribution of human short wave cones to luminance and motion detection,” J. Physiol. 413, 563–593 (1989).

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

Tanaka, K.

H. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Directionally selective responses of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent colour stimuli,” Exp. Brain Res. 75, 1–14 (1989).
[CrossRef]

Teller, D. Y.

J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

Thomas, J. P.

Thompson, P.

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

Thompson, P. G.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Tyler, C. W.

Valberg, A.

Valeton, J. M.

J. M. Valeton, D. Van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539–1547 (1983).
[CrossRef] [PubMed]

Van Norren, D.

J. M. Valeton, D. Van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539–1547 (1983).
[CrossRef] [PubMed]

Varner, D. C.

Vingrys, A. J.

A. J. Vingrys, A. B. Metha, D. R. Badcock, “Modelling post receptoral mechanisms in cone contrast space,” Invest. Ophthalmol. Vis. Sci. 34, 750 (1993).

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
[CrossRef]

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[CrossRef]

A. J. Vingrys, P. E. King-Smith, “Factors in using colour video monitors for assessment of visual thresholds,” Colour Res. Appl. 11, Suppl. S57–S62 (1986).

Wandell, B. A.

Watson, A. B.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Whitten, D. N.

R. M. Boynton, D. N. Whitten, “Visual adaptation in monkey cones: recordings of late receptor potentials,” Science 170, 1423–1426 (1970).
[CrossRef] [PubMed]

Yasuda, M.

H. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Directionally selective responses of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent colour stimuli,” Exp. Brain Res. 75, 1–14 (1989).
[CrossRef]

Arch. Ophthalmol. (1)

P. S. Fuhr, T. A. Hershner, K. M. Daum, “Ganzfeld blackout occurs in bowl perimetry and is eliminated by translucent occlusion,” Arch. Ophthalmol. 108, 983–988 (1990).
[CrossRef] [PubMed]

Behav. Res. Methods Instrum. Comput. (2)

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
[CrossRef]

G. R. Cole, T. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comput. 24, 22–27 (1992).
[CrossRef]

Color Res. Appl. (1)

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[CrossRef]

Colour Res. Appl. (1)

A. J. Vingrys, P. E. King-Smith, “Factors in using colour video monitors for assessment of visual thresholds,” Colour Res. Appl. 11, Suppl. S57–S62 (1986).

Exp. Brain Res. (1)

H. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Directionally selective responses of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent colour stimuli,” Exp. Brain Res. 75, 1–14 (1989).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (2)

A. J. Vingrys, A. B. Metha, D. R. Badcock, “Modelling post receptoral mechanisms in cone contrast space,” Invest. Ophthalmol. Vis. Sci. 34, 750 (1993).

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).

J. Neurosci. (1)

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (7)

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

J. P. Thomas, “Detection and identification: how are they related?” J. Opt. Soc. Am. A 2, 1457–1467 (1985).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, D. C. Varner, D. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–50 (1993).
[CrossRef] [PubMed]

For an excellent review, see P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
[CrossRef] [PubMed]

B. B. Lee, P. R. Martin, A. Valberg, J. Kremers, “Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation,” J. Opt. Soc. Am. A 10, 1403–1412 (1993).These authors have proposed an alternative hypothesis to explain elliptical threshold contours. They argue that the shape of the profile may be inherent in the neural substrate that subserves the task and that contour rounding reflects phase shifts between center and surround inputs. Their single-cell studies indicate that such effects will be most pronounced at high temporal frequencies (>10 Hz).
[CrossRef] [PubMed]

J. Physiol. (1)

J. Lee, C. F. Stromeyer, “Contribution of human short wave cones to luminance and motion detection,” J. Physiol. 413, 563–593 (1989).

Kybernetic (1)

R. F. Quick, “A vector magnitude model of contrast detection,” Kybernetic 16, 65–67 (1974).
[CrossRef]

Nature (London) (1)

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

Prog. Ret. Res. (1)

R. M. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Ret. Res. 3, 263–346 (1984).
[CrossRef]

Science (1)

R. M. Boynton, D. N. Whitten, “Visual adaptation in monkey cones: recordings of late receptor potentials,” Science 170, 1423–1426 (1970).
[CrossRef] [PubMed]

Vision Res. (14)

J. M. Valeton, D. Van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539–1547 (1983).
[CrossRef] [PubMed]

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).For example, see C. F. Stromeyer, J. Lee, R. T. Eskew, “Peripheral chromatic sensitivity for flashes: a post-receptoral red–green asymmetry,” Vision Res. 32, 1865–1873 (1992).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

P. Cavanagh, S. Anstis, “The contribution of colour to motion in normal and colour-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

A. Stockman, D. I. A. MacLeod, D. D. De Priest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–749 (1979).
[CrossRef] [PubMed]

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

N. Graham, J. G. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–825 (1978).
[CrossRef] [PubMed]

Other (2)

The average (±1 SEM) probability summation indices [n of Eq. (2)] over all eccentricities for detection contours were 3.58 ± 0.22 (AM) and 4.35 ± 0.61 (SD). For direction-discrimination contours they were 1.81 ± 0.10 (AM) and 1.89 ± 0.16 (SD). For all threshold contours fitted with the model (Fig. 3), the least χ2values indicate that the model provides a statistically good fit to the data in each case (χ2 < 6.0, df = 7). A student’s t-test shows that the detection contours were significantly nonelliptical (n ≠ 2.0) at p < 0.001 (AM) and p < 0.01 (SD), whereas elliptical contours (n = 2.0) are consistent with the direction data (p > 0.05).

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Foveal-detection and direction-discrimination thresholds for two observers (AM and SD) shown in the L–M plane of cone contrast space. Open and filled symbols indicate detection and direction-discrimination thresholds, respectively. The smaller symbols define the limits of 1 standard error of the mean (SEM). The straight lines show the threshold contour of putative mechanisms sensitive to the sum of L- and M-cone contrast (solid) and the difference in L- and M-cone contrast (dashed). The shading indicates that the stimuli are spatially and temporally symmetric about the adapting condition.

Fig. 2
Fig. 2

Detection (open symbols) and direction-discrimination (filled symbols) thresholds at various eccentricities: results for (a) observer AM and (b) observer SD. Other details are as for Fig. 1. Note that the cone contrast scales change with eccentricity so that all data remain clearly visible.

Fig. 3
Fig. 3

Model fit of threshold contours to the data of Figs. 1 and 2: results for (a) observer AM and (b) observer SD. The left-hand panels show detection contours, and the right-hand panels show direction-discrimination contours. The innermost contours represent foveal data, and progressively larger contours correspond to 3°, 6°, 9°, and 12° data.

Fig. 4
Fig. 4

Model estimate (±1 SEM) of L:M-cone contrast input ratios for the additive and the opponent mechanisms of two observers (AM and SD) as a function of eccentricity. Squares and circles show estimates for the additive and the opponent mechanisms, respectively. Open and shaded symbols indicate detection and direction-discrimination tasks, respectively.

Fig. 5
Fig. 5

Normalized thresholds for the detection (open symbols) and direction-discrimination (shaded symbols) tasks as a function of retinal eccentricity for two observers (AM and SD). Squares and circles represent thresholds for the additive and the color-opponent mechanisms, respectively.

Fig. 6
Fig. 6

Psychometric functions for detection (squares), chromatic perception (shaded circles), and direction-discrimination (open circles) obtained with luminance- (left-hand panels) and color- (right-hand panels) defined stimuli at several eccentricities: results for (a) observer AM and (b) observer SD.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T i = k S i Δ S / S b + k M i Δ M / M b + k L i Δ L / L b ,
( S total ) n = ( T i n ) ,
T i = k M i Δ M / M b + k L i Δ L / L b .

Metrics