Abstract

Optical-field correction with deformable mirrors can be accomplished by correction of both amplitude and phase. As a result of developments over the past 20 years, phase correction with deformable mirrors has become a mature technology. We discuss simply the phase correction when it is concerned with field correction. The basic principle of amplitude correction with deformable mirrors is that if a certain phase distribution is constructed at the deformable mirror, after a vacuum diffraction, a certain amplitude distribution can be obtained. Some algorithms for implementing the principle have been put forward by several researchers [ T. T. Karr, Proc. Soc. Photo-Opt. Instrum. Eng. 1221, 26 ( 1990); Wang Kai-yun et al., Proc. Soc. Photo-Opt. Instrum. Eng. 1628, 244 ( 1992)]. But there are two problems that need to be solved. The first is that the vacuum path is too long. The second is that the precisions of these algorithms are relatively low. We describe a new algorithm, which not only yields a 1–2 order-of-magnitude reduction in the vacuum distance but also improves the amplitude correction precision.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription