Abstract

Resonance structure in elastic scattering was measured for evaporating micrometer-sized glycerol droplets suspended in an electrodynamic trap. Seeding the droplets with polystyrene latex particles having a diameter of 30 nm ≤ d ≤ 105 nm broadens and attenuates the highest Q (with bare Q ≈ 103−105) resonances, where Q is defined as the ratio of the energy stored to the energy lost from a cavity per cycle. Regardless of whether resonance conditions are satisfied, the presence of latex particles causes fluctuations in the scattering with an amplitude of up to ≈30% of the total signal. Model calculations suggest that the fluctuations may be due at least partially to agglomerated latex particles passing through hot-spot regions within the droplet.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
    [CrossRef]
  2. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
    [CrossRef]
  3. J. Owen, R. K. Chang, P. W. Barber, “Morphology dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
    [CrossRef]
  4. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [CrossRef]
  5. J. B. Snow, S. Qian, R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [CrossRef] [PubMed]
  6. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
    [CrossRef] [PubMed]
  7. J.-Z. Zhang, R. K. Chang, “Generation and suppression of stimulated Brillouin scattering in single liquid droplets,” J. Opt. Soc. Am. B 6, 151–153 (1989).
    [CrossRef]
  8. P. Chýlek, D. Ngo, R. G. Pinnick, “Resonance structure of composite and slightly absorbing spheres,” J. Opt. Soc. Am. A 9, 775–780 (1992).
    [CrossRef]
  9. B. Bronk, M. J. Smith, S. Arnold, “Photon-correlation spectroscopy for small spherical inclusions in a micrometer-sized electrodynamically levitated droplet,” Opt. Lett. 18,93–95 (1993).
    [CrossRef] [PubMed]
  10. H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, P. Chýlek, “Internal scattering effects on microdroplet resonant emission structure,” Opt. Lett. 17, 970–972 (1992).
    [CrossRef] [PubMed]
  11. R. L. Armstrong, J.-G. Xie, T. Ruekgauer, J. Gu, R. G. Pinnick, “Effects of submicrometer-sized particles on micro-droplet lasing,” Opt. Lett. 18, 119–121 (1993).
    [CrossRef] [PubMed]
  12. J.-G. Xie, T. E. Ruekgauer, R. R. Armstrong, R. G. Pinnick, “Suppression of stimulated Raman scattering from microdroplets by seeding with nanometer-sized latex particles,” Opt. Lett. 18, 340–342 (1993).
    [CrossRef] [PubMed]
  13. S. Arnold, “Spectroscopy of single levitated micron sized particles,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 2, pp. 66–127;M. Essien, J. B. Gillespie, R. L. Armstrong, “Observation of suppression of morphology-dependent resonance in singly levitated micrometer-sized droplets,” Appl. Opt. 31, 2148–2153 (1992).
    [CrossRef] [PubMed]
  14. H. M. Lai, C. C. Lam, P. T. Leung, K. Young, “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J Opt. Soc. Am. B 8, 1962–1973 (1991).
    [CrossRef]
  15. K. Fuller, “Scattering and absorption by inhomogeneous spheres and sphere aggregates,” Laser Applications in Combustion and Combustion Diagnostics, L. C. Liou, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1862, 249–257 (1993);“Scattering of light by a coated sphere,” Opt. Lett. 18, 257–259 (1993).
    [CrossRef]

1993 (3)

1992 (2)

1991 (1)

H. M. Lai, C. C. Lam, P. T. Leung, K. Young, “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J Opt. Soc. Am. B 8, 1962–1973 (1991).
[CrossRef]

1989 (1)

1985 (1)

1984 (1)

1982 (1)

J. Owen, R. K. Chang, P. W. Barber, “Morphology dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[CrossRef]

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

1978 (1)

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

1977 (1)

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Armstrong, R. L.

Armstrong, R. R.

Arnold, S.

B. Bronk, M. J. Smith, S. Arnold, “Photon-correlation spectroscopy for small spherical inclusions in a micrometer-sized electrodynamically levitated droplet,” Opt. Lett. 18,93–95 (1993).
[CrossRef] [PubMed]

S. Arnold, “Spectroscopy of single levitated micron sized particles,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 2, pp. 66–127;M. Essien, J. B. Gillespie, R. L. Armstrong, “Observation of suppression of morphology-dependent resonance in singly levitated micrometer-sized droplets,” Appl. Opt. 31, 2148–2153 (1992).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Barber, P. W.

J. Owen, R. K. Chang, P. W. Barber, “Morphology dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Bronk, B.

Campillo, A. J.

Chang, R. K.

Chýlek, P.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Eversole, J. D.

Fuller, K.

K. Fuller, “Scattering and absorption by inhomogeneous spheres and sphere aggregates,” Laser Applications in Combustion and Combustion Diagnostics, L. C. Liou, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1862, 249–257 (1993);“Scattering of light by a coated sphere,” Opt. Lett. 18, 257–259 (1993).
[CrossRef]

Gu, J.

Huston, A. L.

Kiehl, J. T.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

Ko, M. K. W.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

Lai, H. M.

H. M. Lai, C. C. Lam, P. T. Leung, K. Young, “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J Opt. Soc. Am. B 8, 1962–1973 (1991).
[CrossRef]

Lam, C. C.

H. M. Lai, C. C. Lam, P. T. Leung, K. Young, “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J Opt. Soc. Am. B 8, 1962–1973 (1991).
[CrossRef]

Leung, P. T.

H. M. Lai, C. C. Lam, P. T. Leung, K. Young, “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J Opt. Soc. Am. B 8, 1962–1973 (1991).
[CrossRef]

Lin, H.-B.

Long, M. B.

Ngo, D.

Owen, J.

J. Owen, R. K. Chang, P. W. Barber, “Morphology dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[CrossRef]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Pinnick, R. G.

Qian, S.

Ruekgauer, T.

Ruekgauer, T. E.

Smith, M. J.

Snow, J. B.

Tzeng, H.-M.

Wall, K. F.

Xie, J.-G.

Young, K.

H. M. Lai, C. C. Lam, P. T. Leung, K. Young, “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J Opt. Soc. Am. B 8, 1962–1973 (1991).
[CrossRef]

Zhang, J.-Z.

Aerosol Sci. Technol. (1)

J. Owen, R. K. Chang, P. W. Barber, “Morphology dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[CrossRef]

J Opt. Soc. Am. B (1)

H. M. Lai, C. C. Lam, P. T. Leung, K. Young, “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J Opt. Soc. Am. B 8, 1962–1973 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (6)

Phys. Rev. A (1)

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Other (2)

S. Arnold, “Spectroscopy of single levitated micron sized particles,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 2, pp. 66–127;M. Essien, J. B. Gillespie, R. L. Armstrong, “Observation of suppression of morphology-dependent resonance in singly levitated micrometer-sized droplets,” Appl. Opt. 31, 2148–2153 (1992).
[CrossRef] [PubMed]

K. Fuller, “Scattering and absorption by inhomogeneous spheres and sphere aggregates,” Laser Applications in Combustion and Combustion Diagnostics, L. C. Liou, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1862, 249–257 (1993);“Scattering of light by a coated sphere,” Opt. Lett. 18, 257–259 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of experimental setup used to measure elastic scattering from micrometer-sized glycerol droplets seeded with nanometer-sized latex particles. Droplets are caught in an elctrodynamic trap within a nearly airtight chamber loaded with desiccant to ensure continuous droplet are illuminated with a polarized argon-ion laser (λ = 514.5nm) from below, and light scattered around 87.5 deg from the direction of forward scattering is sensed by a photomultiplier tube (PMT) through a microscope; the resulting signal is amplified, digitized, and recorded.

Fig. 2
Fig. 2

Typical evaporation-rate history of a glycerol droplet levitated in the electrodynamic trap. The sudden change in the region of 9 μm is due to addition of desiccant to the cell. The time required for evaporation from 10- to 2-μm radius was 5.6 h.

Fig. 3
Fig. 3

(a) Mie scattering theory predictions for light scattered by a glycerol droplet (with refractive index m = 1.4746) through the aperture described in Fig. 1, with several TE and TM resonances identified; (b) corresponding measurements of light scattering from an evaporating glycerol droplet; (c)–(e) same as (b) except for a glycerol droplet seeded with the indicated numbers of (c) 30-nm-diameter latex particles, (d) 64-nm-diameter particles, and (e) 105-nm-diameter particles. Seeded droplets contain ≈1 vol. % latex.

Fig. 4
Fig. 4

Section of the data shown in Fig. 3 expanded around the TE 120 7 resonance, revealing the broadening of the resonance and the fluctuations in scattering caused by seeding droplets with latex particles.

Fig. 5
Fig. 5

Same as Fig. 3 except for smaller glycerol droplets. Seeded droplets contain 1.5−5 vol. % latex.

Fig. 6
Fig. 6

Section of the data shown in Fig. 5 expanded around the TE 47 2 resonance.

Fig. 7
Fig. 7

Theoretical prediction of scattering for the TE 46 2 resonance for a homogeneous glycerol droplet and for a glycerol droplet containing a single 64-nm-diameter latex inclusion at the hot spot located at normalized radius r/r0 = 0.85 and in the forward scattering direction. The inclusion causes a definite shift but only a small broadening of the resonance.

Fig. 8
Fig. 8

Mie scattering theory predictions in the region of the TE 142 9 Resonance for a homogeneous glycerol droplet compared with measurement of a glycerol droplet containing 3.5 × 106 −30-nm-diameter latex inclusions.

Fig. 9
Fig. 9

Same as Fig. 8 except for the TE 91 5 resonance, which occurred 2.4 h later in the levitation experiment.

Fig. 10
Fig. 10

Predicted scattered intensity for a nonresonant, 6.36-μm-diameter glycerol droplet containing latex inclusions rotated through the hot spot (radial position r/r0 = 0.85 and angular position α = 0). The electric vector is perpendicular to the plane containing the z axis and the inclusion, (a) Scattering for a 64-nm-diameter inclusion, (b) scattering for a 142-nm-diameter inclusion having the volume of 11 single 64-nm-diameter particles.

Fig. 11
Fig. 11

Measured scattering of evaporating glycerol droplet seeded with 2.2 × 105−64-nm-diameter latex particles, (a) Approximately 35 min after levitation begins, fluctuations in scattering that are due to inclusions are ≈11% of the total signal, whereas (b) after 232 min, fluctuations increase to ==18%, apparently because of the higher concentration and agglomeration of latex particles.

Tables (2)

Tables Icon

Table 1 Quality Factors for Droplet Resonances

Tables Icon

Table 2 Number of Agglomerated Latex Inclusions Needed for Obtaining Observed Scattering Fluctuations in Levitated Glycerol Dropletsa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

1 Q = 1 Q 0 + 1 Q l + 1 Q sc + 1 Q p ,
Q sc = 2 m / N λ β r 2 ,
TE 142 9
TE 120 7
TE 116 7
TE 91 5
TE 90 5
TE 81 4
TE 80 4
TE 47 2
TE 46 2

Metrics