Abstract

We consider field distributions in fractional Talbot planes behind a periodic two-dimensional complex-amplitude transparency that is illuminated by a unit-amplitude plane wave. In the paraxial approximation the field in various fractional Talbot planes is expressed as a sum of contributions from a finite number of points in the plane of the transparency, yielding compact algebraic formulas for the diffracted field. Given the desired intensity distribution in the fractional Talbot plane, we synthesize the transmission function from nonlinear equations. An experimental illustration that uses a binary phase grating is given.

© 1994 Optical Society of America

Full Article  |  PDF Article
Related Articles
Imaging in first-order optical systems

T. Alieva and F. Agullo-Lopez
J. Opt. Soc. Am. A 13(12) 2375-2380 (1996)

Multilevel phase gratings for array illuminators

Victor Arrizón and J. Ojeda-Castañeda
Appl. Opt. 33(25) 5925-5931 (1994)

Multilayer array illuminators with binary phase plates at fractional Talbot distances

H. Hamam and J. L. de Bougrenet de la Tocnaye
Appl. Opt. 35(11) 1820-1826 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription