Abstract

Spectral efficiency functions were measured for 50 color-normal observers (aged 19–85 years) by means of heterochromatic flicker photometry (HFP) and heterochromatic brightness matching (HBM). Foveally viewed, circular, 1.2°-diameter stimuli were presented as 3-s flashes (50% duty cycle) in Maxwellian view. Monochromatic lights (420–700 nm; 16 wavelengths) were equated to a 100-Td (trolands), broadband white standard in both procedures. In both HFP and HBM, average sensitivity (specified at the cornea) decreased at short wavelengths with increasing age, consistent with age-related increases in the density of the ocular media. The short-wavelength HBM decline was of lower magnitude than the HFP decline. HFP data were modeled by a weighted additive combination of long- and middle-wavelength-cone inputs and density spectra of the ocular media and macular pigment. HBM data were analyzed with an upper envelope of additive and subtractive combinations of log-transformed cone absorption functions. These analyses indicated that HBM sensitivity, specified at the retina by correction for estimated lens and macular pigment density, increased with age in an approximately wavelength-independent manner over a broad range from 420 to 560 nm.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Owsley, M. E. Sloane, “Vision and aging,” in Handbook of Neuropsychology,F. Boiler, J. Grafman, eds. (Elsevier, Amsterdam, 1990), Vol.4, pp. 229–49.
  2. J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision, and aging,” Optom Vis. Sci. 67, 214–29 (1990).
    [CrossRef] [PubMed]
  3. R. A. Weale, The Senescence of Human Vision (Oxford U. Press, Oxford, U.K., 1992).
  4. J. Mellerio, “Light absorption and scatter in the human lens,” Vision Res. 11, 129–41 (1971).
    [CrossRef] [PubMed]
  5. J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247–58 (1982).
    [CrossRef] [PubMed]
  6. J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–440 (1987).
    [CrossRef] [PubMed]
  7. R. A. Weale, “Age and the transmittance of the human crystalline lens,” J Physiol. 395, 577–587(1988).
    [PubMed]
  8. G. Verriest, “La variation de la courbe spectrale photopique d’efficacité limineuse relative chez les sujets normaux,” Nouv. Rev. Opt. Appl. 1, 107–126 (1970).
    [CrossRef]
  9. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [CrossRef] [PubMed]
  10. J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
    [CrossRef]
  11. G. Wagner, R. M. Boynton, “Comparison of four methods of heterochromatic photometry,” J. Opt. Soc. Am. 62, 1508–1515 (1972).
    [CrossRef] [PubMed]
  12. R. E. Bedford, G. W. Wyszecki, “Luminosity functions for various field sizes and levels of retinal illuminance,” J. Opt. Soc. Am. 48, 406–411 (1958).
    [CrossRef] [PubMed]
  13. M. Ikeda, J. Ikeda, M. Ayama, “Specification of individual variation in luminous efficiency for brightness,” Color Res. Appl. 17, 31–44 (1984).
    [CrossRef]
  14. G. Wyszecki, W. S. Stiles, Color Science, Concepts and Methods: Quantitative Data and Formulas, 1st ed. (Wiley, New York, 1967).
  15. J. P. Chandler, STEPIT, Quantum Chemistry Exchange Program (Indiana University, Bloomington, Ind., 1965).
  16. J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vis. Res. 30, 937–943 (1990).
    [CrossRef] [PubMed]
  17. J. J. Vos, Tabulated Characteristics of a Proposed 2° Fundamental Observer (Institute for Perception, Soesterberg, The Netherlands, 1978).
  18. W. W. Coblentz, W. B. Emerson, “Relative sensibility of the average eye to light of different colors and some practical applications to radiation problems,” Bur. Stand. (U.S.) Bull. 14, 167–236 (1917).
    [CrossRef]
  19. R. A. Crone, “Spectral sensitivity in color defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
    [PubMed]
  20. W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–78 (1964).
    [CrossRef] [PubMed]
  21. A. Adam, “Foveal red-green ratios of normals, colourblinds and heterozygotes,” Proc. Tel-Hashomer Hosp. (Tel-Aviv) 8, 2–6 (1969).
  22. R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
    [CrossRef] [PubMed]
  23. M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
    [CrossRef] [PubMed]
  24. M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
    [CrossRef] [PubMed]
  25. C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
    [CrossRef] [PubMed]
  26. J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea and parafovea,” (Ph.D. dissertation, University of California at San Diego, San Diego, Calif., 1988).
  27. J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and human macular pigment density; appended with translations from the work of Max Schultze and Ewald Hering,” Vision Res. 27, 257–268 (1987).
    [CrossRef]
  28. A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
    [PubMed]
  29. Retinal HBM sensitivities could have been estimated with the use of only ocular media density estimates (from the HFP analysis in which macular pigment was fixed), but macular pigment density varies considerably among individuals.27,28 For this reason the estimated macular pigment variation was included in these calculations.
  30. S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
    [CrossRef] [PubMed]
  31. H. D. Bauer, R. Röhler, “Brightness generation in the human visual system. Colour-brightness: A contribution of cortical colour channels to brightness sensation,” Vision Res. 17, 1211–1216 (1977).
    [CrossRef] [PubMed]
  32. Y. Nakano, M. Ikeda, P. K. Kaiser, “Contributions of the opponent mechanisms to brightness and nonlinear models,” Vision Res. 28, 799–810 (1988).
    [CrossRef] [PubMed]
  33. J. S. Werner, B. R. Wooten, “Opponent chromatic response functions for an average observer,” Percept. Psy-chophys. 25, 371–374 (1979).
    [CrossRef]
  34. The situation is more complicated for the short-wavelength mechanism, because the L:M ratio changes relatively little over the wavelength range covered by this mechanism, making it difficult to determine the relative contributions of L and M cones.

1991 (1)

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

1990 (3)

J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vis. Res. 30, 937–943 (1990).
[CrossRef] [PubMed]

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[CrossRef] [PubMed]

J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision, and aging,” Optom Vis. Sci. 67, 214–29 (1990).
[CrossRef] [PubMed]

1989 (2)

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

1988 (3)

A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

Y. Nakano, M. Ikeda, P. K. Kaiser, “Contributions of the opponent mechanisms to brightness and nonlinear models,” Vision Res. 28, 799–810 (1988).
[CrossRef] [PubMed]

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J Physiol. 395, 577–587(1988).
[PubMed]

1987 (2)

J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and human macular pigment density; appended with translations from the work of Max Schultze and Ewald Hering,” Vision Res. 27, 257–268 (1987).
[CrossRef]

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–440 (1987).
[CrossRef] [PubMed]

1984 (1)

M. Ikeda, J. Ikeda, M. Ayama, “Specification of individual variation in luminous efficiency for brightness,” Color Res. Appl. 17, 31–44 (1984).
[CrossRef]

1982 (1)

1979 (1)

J. S. Werner, B. R. Wooten, “Opponent chromatic response functions for an average observer,” Percept. Psy-chophys. 25, 371–374 (1979).
[CrossRef]

1978 (1)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

1977 (1)

H. D. Bauer, R. Röhler, “Brightness generation in the human visual system. Colour-brightness: A contribution of cortical colour channels to brightness sensation,” Vision Res. 17, 1211–1216 (1977).
[CrossRef] [PubMed]

1972 (1)

1971 (1)

J. Mellerio, “Light absorption and scatter in the human lens,” Vision Res. 11, 129–41 (1971).
[CrossRef] [PubMed]

1970 (1)

G. Verriest, “La variation de la courbe spectrale photopique d’efficacité limineuse relative chez les sujets normaux,” Nouv. Rev. Opt. Appl. 1, 107–126 (1970).
[CrossRef]

1969 (2)

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

A. Adam, “Foveal red-green ratios of normals, colourblinds and heterozygotes,” Proc. Tel-Hashomer Hosp. (Tel-Aviv) 8, 2–6 (1969).

1966 (1)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

1964 (1)

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–78 (1964).
[CrossRef] [PubMed]

1959 (1)

R. A. Crone, “Spectral sensitivity in color defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
[PubMed]

1958 (1)

1917 (1)

W. W. Coblentz, W. B. Emerson, “Relative sensibility of the average eye to light of different colors and some practical applications to radiation problems,” Bur. Stand. (U.S.) Bull. 14, 167–236 (1917).
[CrossRef]

Adam, A.

A. Adam, “Foveal red-green ratios of normals, colourblinds and heterozygotes,” Proc. Tel-Hashomer Hosp. (Tel-Aviv) 8, 2–6 (1969).

Ayama, M.

M. Ikeda, J. Ikeda, M. Ayama, “Specification of individual variation in luminous efficiency for brightness,” Color Res. Appl. 17, 31–44 (1984).
[CrossRef]

Baker, H. D.

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–78 (1964).
[CrossRef] [PubMed]

Bauer, H. D.

H. D. Bauer, R. Röhler, “Brightness generation in the human visual system. Colour-brightness: A contribution of cortical colour channels to brightness sensation,” Vision Res. 17, 1211–1216 (1977).
[CrossRef] [PubMed]

Bedford, R. E.

Bone, A.

A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

Boynton, R. M.

Chandler, J. P.

J. P. Chandler, STEPIT, Quantum Chemistry Exchange Program (Indiana University, Bloomington, Ind., 1965).

Cicerone, C. M.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Coblentz, W. W.

W. W. Coblentz, W. B. Emerson, “Relative sensibility of the average eye to light of different colors and some practical applications to radiation problems,” Bur. Stand. (U.S.) Bull. 14, 167–236 (1917).
[CrossRef]

Cox, N. J.

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[CrossRef] [PubMed]

Crone, R. A.

R. A. Crone, “Spectral sensitivity in color defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
[PubMed]

Donley, N. J.

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Donnelly, S. K.

J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and human macular pigment density; appended with translations from the work of Max Schultze and Ewald Hering,” Vision Res. 27, 257–268 (1987).
[CrossRef]

Emerson, W. B.

W. W. Coblentz, W. B. Emerson, “Relative sensibility of the average eye to light of different colors and some practical applications to radiation problems,” Bur. Stand. (U.S.) Bull. 14, 167–236 (1917).
[CrossRef]

Estévez, O.

J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vis. Res. 30, 937–943 (1990).
[CrossRef] [PubMed]

Fernandez, L.

A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

Guth, S. L.

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Ikeda, J.

M. Ikeda, J. Ikeda, M. Ayama, “Specification of individual variation in luminous efficiency for brightness,” Color Res. Appl. 17, 31–44 (1984).
[CrossRef]

Ikeda, M.

Y. Nakano, M. Ikeda, P. K. Kaiser, “Contributions of the opponent mechanisms to brightness and nonlinear models,” Vision Res. 28, 799–810 (1988).
[CrossRef] [PubMed]

M. Ikeda, J. Ikeda, M. Ayama, “Specification of individual variation in luminous efficiency for brightness,” Color Res. Appl. 17, 31–44 (1984).
[CrossRef]

Kaiser, P. K.

Y. Nakano, M. Ikeda, P. K. Kaiser, “Contributions of the opponent mechanisms to brightness and nonlinear models,” Vision Res. 28, 799–810 (1988).
[CrossRef] [PubMed]

Kliegl, R.

J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and human macular pigment density; appended with translations from the work of Max Schultze and Ewald Hering,” Vision Res. 27, 257–268 (1987).
[CrossRef]

Landrum, J. T.

A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

Lutze, M.

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–440 (1987).
[CrossRef] [PubMed]

Marrocco, R. T.

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Mellerio, J.

J. Mellerio, “Light absorption and scatter in the human lens,” Vision Res. 11, 129–41 (1971).
[CrossRef] [PubMed]

Nakano, Y.

Y. Nakano, M. Ikeda, P. K. Kaiser, “Contributions of the opponent mechanisms to brightness and nonlinear models,” Vision Res. 28, 799–810 (1988).
[CrossRef] [PubMed]

Nerger, J. L.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea and parafovea,” (Ph.D. dissertation, University of California at San Diego, San Diego, Calif., 1988).

Owsley, C.

C. Owsley, M. E. Sloane, “Vision and aging,” in Handbook of Neuropsychology,F. Boiler, J. Grafman, eds. (Elsevier, Amsterdam, 1990), Vol.4, pp. 229–49.

Peterzell, D. H.

J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision, and aging,” Optom Vis. Sci. 67, 214–29 (1990).
[CrossRef] [PubMed]

Pokorny, J.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–440 (1987).
[CrossRef] [PubMed]

Röhler, R.

H. D. Bauer, R. Röhler, “Brightness generation in the human visual system. Colour-brightness: A contribution of cortical colour channels to brightness sensation,” Vision Res. 17, 1211–1216 (1977).
[CrossRef] [PubMed]

Rushton, W. A. H.

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–78 (1964).
[CrossRef] [PubMed]

Scheetz, A. J.

J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision, and aging,” Optom Vis. Sci. 67, 214–29 (1990).
[CrossRef] [PubMed]

Shevell, S. K.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Sloane, M. E.

C. Owsley, M. E. Sloane, “Vision and aging,” in Handbook of Neuropsychology,F. Boiler, J. Grafman, eds. (Elsevier, Amsterdam, 1990), Vol.4, pp. 229–49.

Smith, V. C.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–440 (1987).
[CrossRef] [PubMed]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science, Concepts and Methods: Quantitative Data and Formulas, 1st ed. (Wiley, New York, 1967).

Tarsis, S. L.

A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

Verriest, G.

G. Verriest, “La variation de la courbe spectrale photopique d’efficacité limineuse relative chez les sujets normaux,” Nouv. Rev. Opt. Appl. 1, 107–126 (1970).
[CrossRef]

Vimal, R. L. P.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Vos, J. J.

J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vis. Res. 30, 937–943 (1990).
[CrossRef] [PubMed]

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

J. J. Vos, Tabulated Characteristics of a Proposed 2° Fundamental Observer (Institute for Perception, Soesterberg, The Netherlands, 1978).

Wagner, G.

Walraven, P. L.

J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vis. Res. 30, 937–943 (1990).
[CrossRef] [PubMed]

Weale, R. A.

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J Physiol. 395, 577–587(1988).
[PubMed]

R. A. Weale, The Senescence of Human Vision (Oxford U. Press, Oxford, U.K., 1992).

Werner, J. S.

J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision, and aging,” Optom Vis. Sci. 67, 214–29 (1990).
[CrossRef] [PubMed]

J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and human macular pigment density; appended with translations from the work of Max Schultze and Ewald Hering,” Vision Res. 27, 257–268 (1987).
[CrossRef]

J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247–58 (1982).
[CrossRef] [PubMed]

J. S. Werner, B. R. Wooten, “Opponent chromatic response functions for an average observer,” Percept. Psy-chophys. 25, 371–374 (1979).
[CrossRef]

Wesner, M. F.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

Wooten, B. R.

J. S. Werner, B. R. Wooten, “Opponent chromatic response functions for an average observer,” Percept. Psy-chophys. 25, 371–374 (1979).
[CrossRef]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science, Concepts and Methods: Quantitative Data and Formulas, 1st ed. (Wiley, New York, 1967).

Wyszecki, G. W.

Am. J. Ophthalmol. (1)

R. A. Crone, “Spectral sensitivity in color defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
[PubMed]

Appl. Opt. (1)

Bur. Stand. (U.S.) Bull. (1)

W. W. Coblentz, W. B. Emerson, “Relative sensibility of the average eye to light of different colors and some practical applications to radiation problems,” Bur. Stand. (U.S.) Bull. 14, 167–236 (1917).
[CrossRef]

Color Res. Appl. (2)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

M. Ikeda, J. Ikeda, M. Ayama, “Specification of individual variation in luminous efficiency for brightness,” Color Res. Appl. 17, 31–44 (1984).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

J Physiol. (1)

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J Physiol. 395, 577–587(1988).
[PubMed]

J. Opt. Soc. Am. (3)

Nouv. Rev. Opt. Appl. (1)

G. Verriest, “La variation de la courbe spectrale photopique d’efficacité limineuse relative chez les sujets normaux,” Nouv. Rev. Opt. Appl. 1, 107–126 (1970).
[CrossRef]

Optom Vis. Sci. (1)

J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision, and aging,” Optom Vis. Sci. 67, 214–29 (1990).
[CrossRef] [PubMed]

Percept. Psy-chophys. (1)

J. S. Werner, B. R. Wooten, “Opponent chromatic response functions for an average observer,” Percept. Psy-chophys. 25, 371–374 (1979).
[CrossRef]

Proc. Tel-Hashomer Hosp. (Tel-Aviv) (1)

A. Adam, “Foveal red-green ratios of normals, colourblinds and heterozygotes,” Proc. Tel-Hashomer Hosp. (Tel-Aviv) 8, 2–6 (1969).

Vis. Res. (1)

J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vis. Res. 30, 937–943 (1990).
[CrossRef] [PubMed]

Vision Res. (11)

J. Mellerio, “Light absorption and scatter in the human lens,” Vision Res. 11, 129–41 (1971).
[CrossRef] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–78 (1964).
[CrossRef] [PubMed]

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

H. D. Bauer, R. Röhler, “Brightness generation in the human visual system. Colour-brightness: A contribution of cortical colour channels to brightness sensation,” Vision Res. 17, 1211–1216 (1977).
[CrossRef] [PubMed]

Y. Nakano, M. Ikeda, P. K. Kaiser, “Contributions of the opponent mechanisms to brightness and nonlinear models,” Vision Res. 28, 799–810 (1988).
[CrossRef] [PubMed]

J. S. Werner, S. K. Donnelly, R. Kliegl, “Aging and human macular pigment density; appended with translations from the work of Max Schultze and Ewald Hering,” Vision Res. 27, 257–268 (1987).
[CrossRef]

Other (8)

The situation is more complicated for the short-wavelength mechanism, because the L:M ratio changes relatively little over the wavelength range covered by this mechanism, making it difficult to determine the relative contributions of L and M cones.

Retinal HBM sensitivities could have been estimated with the use of only ocular media density estimates (from the HFP analysis in which macular pigment was fixed), but macular pigment density varies considerably among individuals.27,28 For this reason the estimated macular pigment variation was included in these calculations.

J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea and parafovea,” (Ph.D. dissertation, University of California at San Diego, San Diego, Calif., 1988).

C. Owsley, M. E. Sloane, “Vision and aging,” in Handbook of Neuropsychology,F. Boiler, J. Grafman, eds. (Elsevier, Amsterdam, 1990), Vol.4, pp. 229–49.

R. A. Weale, The Senescence of Human Vision (Oxford U. Press, Oxford, U.K., 1992).

J. J. Vos, Tabulated Characteristics of a Proposed 2° Fundamental Observer (Institute for Perception, Soesterberg, The Netherlands, 1978).

G. Wyszecki, W. S. Stiles, Color Science, Concepts and Methods: Quantitative Data and Formulas, 1st ed. (Wiley, New York, 1967).

J. P. Chandler, STEPIT, Quantum Chemistry Exchange Program (Indiana University, Bloomington, Ind., 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Each set of symbols represents mean relative log-quantal HFP sensitivity for observers in the age range indicated. Solid curves show the Vos-modified V(λ) function normalized at 600 nm to each data set. Standard errors are indicated when they are larger than the data points.

Fig. 2
Fig. 2

Each set of symbols represents mean relative log-quantal HBM sensitivity for observers in the age range indicated. Solid curves show the average function for all observers normalized at 600 nm to each data set. Standard errors are indicated when they are larger than the data points.

Fig. 3
Fig. 3

Relative log-quantal sensitivity (open symbols) of a standard observer [Vos-modified V(λ)] and of three observers (HFP). Each dashed curve represents the average HFP function for the age group of the corresponding observer. Solid curves represent fits computed according to the parameters shown in Table 2 below.

Fig. 4
Fig. 4

Log-quantal HBM sensitivity (open symbols) for four observers. Dashed curves represent fits determined by the valence model. Solid curves represent fits determined by the log LMS model (see Table 3 below).

Fig. 5
Fig. 5

Log relative M- and S-cone absorption plotted as a function of log relative L-cone absorption for four observers. Cone activity is specified at the retina (corrected for ocular media and macular pigment density). Log S is plotted as a function of log L (open circles) for wavelengths between 420 and 560 nm. Log M is plotted as a function of log L (open triangles) for wavelengths between 580 and 700 nm. Placement of each observer’s data along the horizontal axis is arbitrary.

Fig. 6
Fig. 6

Histograms of slopes for short- (top) and long- (bottom) wavelength prediction functions from the log LMS model. Dotted bars indicate negative slopes (additive mechanisms); shaded bars indicate positive slopes (subtractive mechanisms).

Fig. 7
Fig. 7

HBM sensitivity change (log units per decade) plotted as a function of wavelength at the cornea (open circles) and at the retina (filled triangles). The horizontal line at zero indicates no age-related change. The thicker horizontal line shows the mean increase for wavelengths between 420 and 560 nm, 0.052 log unit per decade.

Tables (3)

Tables Icon

Table 1 Correlation Coefficients and Slopes: Log Sensitivity Change per Decade from Regressions of Nonnormalized HFP and HBM (Corneal) Sensitivity on Age

Tables Icon

Table 2 Parameter Estimates for HFP Functions (Fig. 3)

Tables Icon

Table 3 Parameter Estimates for HBM Functions (Fig. 4)

Metrics