Abstract

We describe a series of experiments to characterize the sodium-layer guide star that was formed with the high-power laser developed for the Lawrence Livermore National Laboratory Atomic Vapor Laser Isotope Separation program. An emission spot size of 3.0 m was measured, with an implied laser irradiance spot diameter of 2.0 m. The rms spot motion at the higher laser powers, with active beam-pointing control, was less than 0.5 arcsec and had little effect on the observed spot size under these conditions. We measured the resonant backscatter from the sodium layer as a function of laser power to obtain a saturation curve. With a transmitted power of 1100 W and an atmospheric transmission of 0.6, the irradiance from the guide star at the ground was 10 (photons/cm2)/ms, corresponding to a visual magnitude of 5.1. The implications for the performance of wave-front sensors with a laser guide star of this magnitude and resulting closed-loop adaptive-optics performance are discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Happer, G. J. MacDonald, C. E. Max, F. J. Dyson, “Atmospheric-turbulence compensation by resonant optical backscattering from the sodium layer in the upper atmosphere,” J. Opt. Soc. Am. A 11, 263–276 (1994).
    [CrossRef]
  2. R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).
  3. R. A. Humphreys, C. A. Primmerman, L. C. Bradley, J. Hermann, “Atmospheric-turbulence measurements using a synthetic beacon in the mesospheric sodium layer,” Opt. Lett. 16, 1367–1369 (1991).
    [CrossRef] [PubMed]
  4. L. A. Thompson, C. S. Gardner, “Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
    [CrossRef]
  5. C. E. Max, K. Avicola, J. M. Brase, H. W. Friedman, H. D. Bissinger, J. Duff, D. T. Gavel, J. A. Horton, R. Kiefer, J. R. Morris, S. S. Olivier, R. W. Presta, D. A. Rapp, J. T. Salmon, K. E. Waltjen, “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics,” J. Opt. Soc. Am. A 11, 813–824 (1994).
    [CrossRef]
  6. R. P. Hackel, “High power performance of copper pumped dye lasers,” in Proceedings of International Conference on Lasers ’91 (Society for Optical and Quantum Electronics, San Diego, Calif., 1991), pp. 35–42.
  7. I. L. Bass, R. E. Bonanno, R. P. Hackel, P. R. Hammond, “High-average-power dye laser at Lawrence Livermore National Laboratory,” Appl. Opt. 31, 6993–7006 (1992).
    [CrossRef] [PubMed]
  8. K. Avicola, J. T. Salmon, J. M. Brase, K. E. Waltjen, R. W. Presta, K. S. Balch, “High frame-rate, large field wavefront sensor,” in Laser Guide Star Adaptive Optics Workshop Proceedings (Phillips Laboratory, Albuquerque, N.M., 1992), Vol. 2, pp. 776–793.
  9. J. B. Oke, “Photoelectric spectrophotometry of stars suitable for standards,” Astrophys. J. 140, 689–693 (1964).
    [CrossRef]
  10. D. S. Hayes, D. W. Latham, “A rediscussion of atmospheric extinction and the absolute spectral-energy distribution of Vega,” Astrophys. J. 197, 593–601 (1975).
    [CrossRef]
  11. J. R. Morris, “Efficient excitation of a mesospheric sodium laser guide star by intermediate-duration pulses,” J. Opt. Soc. Am. A 11, 832–845 (1994).
    [CrossRef]
  12. C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime layer over Urbana, Illinois. 1. Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
    [CrossRef]
  13. D. T. Gavel, J. R. Morris, R. G. Vernon, “Systematic design and analysis of laser-guide-star adaptive-optics systems for large telescopes,” J. Opt. Soc. Am. A 11, 914–924 (1994).
    [CrossRef]

1994 (4)

1992 (1)

1991 (1)

1987 (1)

L. A. Thompson, C. S. Gardner, “Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
[CrossRef]

1986 (1)

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime layer over Urbana, Illinois. 1. Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

1985 (1)

R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).

1975 (1)

D. S. Hayes, D. W. Latham, “A rediscussion of atmospheric extinction and the absolute spectral-energy distribution of Vega,” Astrophys. J. 197, 593–601 (1975).
[CrossRef]

1964 (1)

J. B. Oke, “Photoelectric spectrophotometry of stars suitable for standards,” Astrophys. J. 140, 689–693 (1964).
[CrossRef]

Avicola, K.

C. E. Max, K. Avicola, J. M. Brase, H. W. Friedman, H. D. Bissinger, J. Duff, D. T. Gavel, J. A. Horton, R. Kiefer, J. R. Morris, S. S. Olivier, R. W. Presta, D. A. Rapp, J. T. Salmon, K. E. Waltjen, “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics,” J. Opt. Soc. Am. A 11, 813–824 (1994).
[CrossRef]

K. Avicola, J. T. Salmon, J. M. Brase, K. E. Waltjen, R. W. Presta, K. S. Balch, “High frame-rate, large field wavefront sensor,” in Laser Guide Star Adaptive Optics Workshop Proceedings (Phillips Laboratory, Albuquerque, N.M., 1992), Vol. 2, pp. 776–793.

Balch, K. S.

K. Avicola, J. T. Salmon, J. M. Brase, K. E. Waltjen, R. W. Presta, K. S. Balch, “High frame-rate, large field wavefront sensor,” in Laser Guide Star Adaptive Optics Workshop Proceedings (Phillips Laboratory, Albuquerque, N.M., 1992), Vol. 2, pp. 776–793.

Bass, I. L.

Bissinger, H. D.

Bonanno, R. E.

Bradley, L. C.

Brase, J. M.

C. E. Max, K. Avicola, J. M. Brase, H. W. Friedman, H. D. Bissinger, J. Duff, D. T. Gavel, J. A. Horton, R. Kiefer, J. R. Morris, S. S. Olivier, R. W. Presta, D. A. Rapp, J. T. Salmon, K. E. Waltjen, “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics,” J. Opt. Soc. Am. A 11, 813–824 (1994).
[CrossRef]

K. Avicola, J. T. Salmon, J. M. Brase, K. E. Waltjen, R. W. Presta, K. S. Balch, “High frame-rate, large field wavefront sensor,” in Laser Guide Star Adaptive Optics Workshop Proceedings (Phillips Laboratory, Albuquerque, N.M., 1992), Vol. 2, pp. 776–793.

Duff, J.

Dyson, F. J.

Foy, R.

R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).

Friedman, H. W.

Gardner, C. S.

L. A. Thompson, C. S. Gardner, “Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
[CrossRef]

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime layer over Urbana, Illinois. 1. Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

Gavel, D. T.

Hackel, R. P.

I. L. Bass, R. E. Bonanno, R. P. Hackel, P. R. Hammond, “High-average-power dye laser at Lawrence Livermore National Laboratory,” Appl. Opt. 31, 6993–7006 (1992).
[CrossRef] [PubMed]

R. P. Hackel, “High power performance of copper pumped dye lasers,” in Proceedings of International Conference on Lasers ’91 (Society for Optical and Quantum Electronics, San Diego, Calif., 1991), pp. 35–42.

Hammond, P. R.

Happer, W.

Hayes, D. S.

D. S. Hayes, D. W. Latham, “A rediscussion of atmospheric extinction and the absolute spectral-energy distribution of Vega,” Astrophys. J. 197, 593–601 (1975).
[CrossRef]

Hermann, J.

Horton, J. A.

Humphreys, R. A.

Kiefer, R.

Labeyrie, A.

R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).

Latham, D. W.

D. S. Hayes, D. W. Latham, “A rediscussion of atmospheric extinction and the absolute spectral-energy distribution of Vega,” Astrophys. J. 197, 593–601 (1975).
[CrossRef]

MacDonald, G. J.

Max, C. E.

Morris, J. R.

Oke, J. B.

J. B. Oke, “Photoelectric spectrophotometry of stars suitable for standards,” Astrophys. J. 140, 689–693 (1964).
[CrossRef]

Olivier, S. S.

Presta, R. W.

C. E. Max, K. Avicola, J. M. Brase, H. W. Friedman, H. D. Bissinger, J. Duff, D. T. Gavel, J. A. Horton, R. Kiefer, J. R. Morris, S. S. Olivier, R. W. Presta, D. A. Rapp, J. T. Salmon, K. E. Waltjen, “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics,” J. Opt. Soc. Am. A 11, 813–824 (1994).
[CrossRef]

K. Avicola, J. T. Salmon, J. M. Brase, K. E. Waltjen, R. W. Presta, K. S. Balch, “High frame-rate, large field wavefront sensor,” in Laser Guide Star Adaptive Optics Workshop Proceedings (Phillips Laboratory, Albuquerque, N.M., 1992), Vol. 2, pp. 776–793.

Primmerman, C. A.

Rapp, D. A.

Salmon, J. T.

C. E. Max, K. Avicola, J. M. Brase, H. W. Friedman, H. D. Bissinger, J. Duff, D. T. Gavel, J. A. Horton, R. Kiefer, J. R. Morris, S. S. Olivier, R. W. Presta, D. A. Rapp, J. T. Salmon, K. E. Waltjen, “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics,” J. Opt. Soc. Am. A 11, 813–824 (1994).
[CrossRef]

K. Avicola, J. T. Salmon, J. M. Brase, K. E. Waltjen, R. W. Presta, K. S. Balch, “High frame-rate, large field wavefront sensor,” in Laser Guide Star Adaptive Optics Workshop Proceedings (Phillips Laboratory, Albuquerque, N.M., 1992), Vol. 2, pp. 776–793.

Sechrist, C. F.

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime layer over Urbana, Illinois. 1. Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

Segal, A. C.

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime layer over Urbana, Illinois. 1. Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

Thompson, L. A.

L. A. Thompson, C. S. Gardner, “Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
[CrossRef]

Vernon, R. G.

Voelz, D. G.

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime layer over Urbana, Illinois. 1. Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

Waltjen, K. E.

C. E. Max, K. Avicola, J. M. Brase, H. W. Friedman, H. D. Bissinger, J. Duff, D. T. Gavel, J. A. Horton, R. Kiefer, J. R. Morris, S. S. Olivier, R. W. Presta, D. A. Rapp, J. T. Salmon, K. E. Waltjen, “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics,” J. Opt. Soc. Am. A 11, 813–824 (1994).
[CrossRef]

K. Avicola, J. T. Salmon, J. M. Brase, K. E. Waltjen, R. W. Presta, K. S. Balch, “High frame-rate, large field wavefront sensor,” in Laser Guide Star Adaptive Optics Workshop Proceedings (Phillips Laboratory, Albuquerque, N.M., 1992), Vol. 2, pp. 776–793.

Appl. Opt. (1)

Astron. Astrophys. (1)

R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).

Astrophys. J. (2)

J. B. Oke, “Photoelectric spectrophotometry of stars suitable for standards,” Astrophys. J. 140, 689–693 (1964).
[CrossRef]

D. S. Hayes, D. W. Latham, “A rediscussion of atmospheric extinction and the absolute spectral-energy distribution of Vega,” Astrophys. J. 197, 593–601 (1975).
[CrossRef]

J. Geophys. Res. (1)

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime layer over Urbana, Illinois. 1. Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

J. Opt. Soc. Am. A (4)

Nature (London) (1)

L. A. Thompson, C. S. Gardner, “Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
[CrossRef]

Opt. Lett. (1)

Other (2)

R. P. Hackel, “High power performance of copper pumped dye lasers,” in Proceedings of International Conference on Lasers ’91 (Society for Optical and Quantum Electronics, San Diego, Calif., 1991), pp. 35–42.

K. Avicola, J. T. Salmon, J. M. Brase, K. E. Waltjen, R. W. Presta, K. S. Balch, “High frame-rate, large field wavefront sensor,” in Laser Guide Star Adaptive Optics Workshop Proceedings (Phillips Laboratory, Albuquerque, N.M., 1992), Vol. 2, pp. 776–793.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Layout of major components at the laser-guide-star experimental site.

Fig. 2
Fig. 2

Schematic of the hardware used in the imaging and the motion-analysis experiments.

Fig. 3
Fig. 3

Schematic of the wave-front-sensing optical equipment.

Fig. 4
Fig. 4

Laser-guide-star images: (a) a 100-frame average with 2-ms exposures at 125 frames/s, (b) a single-frame image.

Fig. 5
Fig. 5

Sum of 100 frames photographed at 125 frames/s with linear interpolation of pixel values (a) with no adjustment of registration, (b) with frames reregistered so that centroids overlap before summing: ave/frm, average per frame.

Fig. 6
Fig. 6

Time trace of image-centroid motion. Upper trace, 0.63 standard deviation; lower trace, 0.32 standard deviation.

Fig. 7
Fig. 7

Laser-guide-star images at various laser-power levels (power and exposures are indicated).

Fig. 8
Fig. 8

Rayleigh- and sodium-backscatter images with (a) modulation turned on (wavelength centered on the absorption line and phase modulated) and (b) center wavelength shifted 2.6 GHz and no modulation. The laser power was 1100 W, 3-s exposure.

Fig. 9
Fig. 9

Sodium-backscatter irradiance at the ground as a function of laser-power level. Experimental results and model predictions are shown.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H S ( ref ) = F λ Δ λ E λ [ ( photons / cm 2 ) / s ] ,
H G ( ref ) = S ref R λ A t T t T f I [ ( photons / cm 2 ) / s ] ,
T α = H G ( ref ) H S ( ref ) = S ref R λ E λ A t T t T f I F λ Δ λ .
T Z = ( T α ) sin ( α ) ,
H G ( lgs ) = S lgs R λ A t T t I ,
N det = H A subap I η opt η int ,
ϕ rms = k d s θ rms ,

Metrics