Abstract

We generated resonant-fluorescent artificial guide stars in the Earth’s mesospheric sodium layer with an 840-Hz, 10-mJ sum-frequency laser operating at 589 nm and have conducted experiments to characterize the guide stars for use as beacons for atmospheric compensation with adaptive optics. We made high-resolution images with a 1.5-m telescope and CCD camera with exposures from 0.1 to 10.1 s of spots as small as 1.64 times the diffraction limit. We also used an intensified charge-injection-device camera to record live video at frame rates of 30 Hz. Using a photomultiplier tube with both the 1.5-m telescope and a 14-in. telescope, we collected temporal data and calculated the sodium-layer column densities of 2–3 × 103/m2 from long pulse measurements. We have observed the phenomenon of optical pumping of the sodium layer by propagating circularly polarized light at peak power densities incident on the layer of 1.0 mW/cm2. Propagating circularly polarized light gives a 41–48% increase in fluorescent return signal over linearly polarized light. Artificial guide stars are suitable for atmospheric compensation with the use of adaptive optics.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
    [Crossref]
  2. C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Experimental compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
    [Crossref]
  3. W. Happer, G. MacDonald, JASON Rep. No. JSR-82-106 (MITRE Corporation, McLean, Va., 1983).
  4. R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).
  5. B. L. Ellerbroek, “Closed-loop wavefront reconstruction using multiple guidestars,” presented at the 22nd Winter Colloquium on Quantum Electronics, Snowbird, Utah, 1992).
  6. T. H. Jeys, “Development of mesospheric sodium laser beacon for atmospheric adaptive optics,” Lincoln Lab. 4, 133–149 (1991).
  7. T. H. Jeys, A. A. Brailove, A. Mooradian, “Sum-frequency generation of sodium resonance radiation,” Appl. Opt. 28, 2588–2591 (1989).
    [Crossref] [PubMed]
  8. See, for example, J. W. Chamberlain, D. M. Hunten, J. E. Mack, “Resonant scattering by atmospheric sodium-IV abundance of sodium in twilight,” J. Atmos. Terr. Phys. 12, 153–165 (1958).
    [Crossref]
  9. For an overview of sodium-layer experiments see, for example, C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
    [Crossref]
  10. L. A. Thompson, C. S. Gardner, “Experiments on laser guidestars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
    [Crossref]
  11. G. Megie, J. E. Blamont, “Laser sounding of atmospheric sodium interpretation in terms of global atmospheric parameters,” Planet. Space Sci. 25, 1093–1109 (1977).
    [Crossref]
  12. E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar observation of the mesospheric sodium layer over Urbana, Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981).
    [Crossref]
  13. C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations,”J. Geophys. Res. 91, 13,659–13,673 (1986).
    [Crossref]
  14. D. M. Simonich, B. R. Clemesha, “Resonant extinction of lidar returns from the alkali metal layers in the upper atmosphere,” Appl. Opt. 22, 1387–1389 (1983).
    [Crossref] [PubMed]
  15. P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, “Optical molasses and multilevel atoms: theory,” J. Opt. Soc. Am. B 6, 2058–2071 (1989).
    [Crossref]
  16. D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, S. Chu, “Optical molasses and multilevel atoms: experiment,” J. Opt. Soc. Am. B 6, 2072–2083 (1989).
    [Crossref]
  17. T. H. Jeys, “Optical pumping of mesospheric sodium,” in Laser Guidestar Adaptive Optics Workshop Proceedings, R. Q. Fugate, ed. (Phillips Laboratory, Albuquerque, N.M., 1992), pp. 238–254.

1991 (3)

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Experimental compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[Crossref]

T. H. Jeys, “Development of mesospheric sodium laser beacon for atmospheric adaptive optics,” Lincoln Lab. 4, 133–149 (1991).

1989 (4)

1987 (1)

L. A. Thompson, C. S. Gardner, “Experiments on laser guidestars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
[Crossref]

1986 (1)

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations,”J. Geophys. Res. 91, 13,659–13,673 (1986).
[Crossref]

1985 (1)

R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).

1983 (1)

1981 (1)

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar observation of the mesospheric sodium layer over Urbana, Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981).
[Crossref]

1977 (1)

G. Megie, J. E. Blamont, “Laser sounding of atmospheric sodium interpretation in terms of global atmospheric parameters,” Planet. Space Sci. 25, 1093–1109 (1977).
[Crossref]

1958 (1)

See, for example, J. W. Chamberlain, D. M. Hunten, J. E. Mack, “Resonant scattering by atmospheric sodium-IV abundance of sodium in twilight,” J. Atmos. Terr. Phys. 12, 153–165 (1958).
[Crossref]

Ameer, G. A.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

Barclay, H. T.

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Experimental compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[Crossref]

Blamont, J. E.

G. Megie, J. E. Blamont, “Laser sounding of atmospheric sodium interpretation in terms of global atmospheric parameters,” Planet. Space Sci. 25, 1093–1109 (1977).
[Crossref]

Boeke, B. R.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

Brailove, A. A.

Browne, S. L.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

Chamberlain, J. W.

See, for example, J. W. Chamberlain, D. M. Hunten, J. E. Mack, “Resonant scattering by atmospheric sodium-IV abundance of sodium in twilight,” J. Atmos. Terr. Phys. 12, 153–165 (1958).
[Crossref]

Chu, S.

Clemesha, B. R.

Ellerbroek, B. L.

B. L. Ellerbroek, “Closed-loop wavefront reconstruction using multiple guidestars,” presented at the 22nd Winter Colloquium on Quantum Electronics, Snowbird, Utah, 1992).

Foy, R.

R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).

Fried, D. L.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

Fugate, R. Q.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

Gardner, C. S.

For an overview of sodium-layer experiments see, for example, C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[Crossref]

L. A. Thompson, C. S. Gardner, “Experiments on laser guidestars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
[Crossref]

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations,”J. Geophys. Res. 91, 13,659–13,673 (1986).
[Crossref]

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar observation of the mesospheric sodium layer over Urbana, Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981).
[Crossref]

Happer, W.

W. Happer, G. MacDonald, JASON Rep. No. JSR-82-106 (MITRE Corporation, McLean, Va., 1983).

Hunten, D. M.

See, for example, J. W. Chamberlain, D. M. Hunten, J. E. Mack, “Resonant scattering by atmospheric sodium-IV abundance of sodium in twilight,” J. Atmos. Terr. Phys. 12, 153–165 (1958).
[Crossref]

Jeys, T. H.

T. H. Jeys, “Development of mesospheric sodium laser beacon for atmospheric adaptive optics,” Lincoln Lab. 4, 133–149 (1991).

T. H. Jeys, A. A. Brailove, A. Mooradian, “Sum-frequency generation of sodium resonance radiation,” Appl. Opt. 28, 2588–2591 (1989).
[Crossref] [PubMed]

T. H. Jeys, “Optical pumping of mesospheric sodium,” in Laser Guidestar Adaptive Optics Workshop Proceedings, R. Q. Fugate, ed. (Phillips Laboratory, Albuquerque, N.M., 1992), pp. 238–254.

Labeyrie, A.

R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).

MacDonald, G.

W. Happer, G. MacDonald, JASON Rep. No. JSR-82-106 (MITRE Corporation, McLean, Va., 1983).

Mack, J. E.

See, for example, J. W. Chamberlain, D. M. Hunten, J. E. Mack, “Resonant scattering by atmospheric sodium-IV abundance of sodium in twilight,” J. Atmos. Terr. Phys. 12, 153–165 (1958).
[Crossref]

Megie, G.

G. Megie, J. E. Blamont, “Laser sounding of atmospheric sodium interpretation in terms of global atmospheric parameters,” Planet. Space Sci. 25, 1093–1109 (1977).
[Crossref]

Mooradian, A.

Murphy, D. V.

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Experimental compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[Crossref]

Page, D. A.

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Experimental compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[Crossref]

Primmerman, C. A.

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Experimental compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[Crossref]

Richter, E. S.

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar observation of the mesospheric sodium layer over Urbana, Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981).
[Crossref]

Riis, E.

Roberts, P. H.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

Rowlett, J. R.

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar observation of the mesospheric sodium layer over Urbana, Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981).
[Crossref]

Ruane, R. E.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

Sechrist, C. F.

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations,”J. Geophys. Res. 91, 13,659–13,673 (1986).
[Crossref]

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar observation of the mesospheric sodium layer over Urbana, Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981).
[Crossref]

Segal, A. C.

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations,”J. Geophys. Res. 91, 13,659–13,673 (1986).
[Crossref]

Shevy, Y.

Simonich, D. M.

Thompson, L. A.

L. A. Thompson, C. S. Gardner, “Experiments on laser guidestars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
[Crossref]

Tyler, G. A.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

Ungar, P. J.

Voelz, D. G.

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations,”J. Geophys. Res. 91, 13,659–13,673 (1986).
[Crossref]

Weiss, D. S.

Wopat, L. M.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

Zollars, B. G.

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Experimental compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[Crossref]

Appl. Opt. (2)

Astron. Astrophys. (1)

R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).

J. Atmos. Terr. Phys. (2)

See, for example, J. W. Chamberlain, D. M. Hunten, J. E. Mack, “Resonant scattering by atmospheric sodium-IV abundance of sodium in twilight,” J. Atmos. Terr. Phys. 12, 153–165 (1958).
[Crossref]

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar observation of the mesospheric sodium layer over Urbana, Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981).
[Crossref]

J. Geophys. Res. (1)

C. S. Gardner, D. G. Voelz, C. F. Sechrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations,”J. Geophys. Res. 91, 13,659–13,673 (1986).
[Crossref]

J. Opt. Soc. Am. B (2)

Lincoln Lab. (1)

T. H. Jeys, “Development of mesospheric sodium laser beacon for atmospheric adaptive optics,” Lincoln Lab. 4, 133–149 (1991).

Nature (London) (3)

L. A. Thompson, C. S. Gardner, “Experiments on laser guidestars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
[Crossref]

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guidestar,” Nature (London) 353, 144–146 (1991).
[Crossref]

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Experimental compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[Crossref]

Planet. Space Sci. (1)

G. Megie, J. E. Blamont, “Laser sounding of atmospheric sodium interpretation in terms of global atmospheric parameters,” Planet. Space Sci. 25, 1093–1109 (1977).
[Crossref]

Proc. IEEE (1)

For an overview of sodium-layer experiments see, for example, C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[Crossref]

Other (3)

W. Happer, G. MacDonald, JASON Rep. No. JSR-82-106 (MITRE Corporation, McLean, Va., 1983).

B. L. Ellerbroek, “Closed-loop wavefront reconstruction using multiple guidestars,” presented at the 22nd Winter Colloquium on Quantum Electronics, Snowbird, Utah, 1992).

T. H. Jeys, “Optical pumping of mesospheric sodium,” in Laser Guidestar Adaptive Optics Workshop Proceedings, R. Q. Fugate, ed. (Phillips Laboratory, Albuquerque, N.M., 1992), pp. 238–254.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental equipment that was used to collect image and temporal data on the resonant fluorescence from the mesospheric sodium layer.

Fig. 2
Fig. 2

Single, digitized frame of a 30-Hz intensified CID video mounted at the M5 position of the 1.5-m telescope showing the resonant-fluorescent spot in the sodium layer at 6.5 W of average power. The star in the upper right-hand corner is SAO 051262 and has a visual magnitude of +8.5. The binary separation is 181 μrad (37.33 arcsec). The field is ≈125 arcsec square.

Fig. 3
Fig. 3

10-s exposure of the sodium resonant fluorescence and its contour plot made with a Photometrics CCD camera mounted at the M5 position of the 1.5-m telescope. The laser power was 9 W, and the FWHM of the spot is 43.8 μrad (9.0 arcsec). The peak of the contour plot is 2200 counts (33,000 detected photons), and the contours are 200 counts each.

Fig. 4
Fig. 4

5-s exposure made from a Photometrics CCD camera attached to a 400-mm, f/2.8 lens mounted to the side of the 1.5-m telescope. The image shows the sodium fluorescent spot at the tip of the Rayleigh backscatter and a natural star adjacent to the spot.

Fig. 5
Fig. 5

Temporal trace of photocount versus time bin showing the Rayleigh backscatter and the sodium-layer return from a PMT mounted to a 14-in. telescope. The laser power was 9 W, and the trace is a sum of 3000 samples. The altitudes were calculated from above the Starfire Optical Range (SOR), 1859 m above sea level.

Fig. 6
Fig. 6

Raw and normalized photocounts collected with a 14-in. aperture of resonant-fluorescent return from the sodium layer as a function of quarter-wave plate rotation angle showing the effect of optical pumping of the atoms in the sodium layer. The peaks at 20° and 120° indicate circularly polarized light, whereas the minimum at 70° is the rotation angle at which the light is linearly polarized.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C s σ t exp ( - 2 C s σ t ) = N det N R ( z z R ) 2 [ 3.539 × 10 - 6 P ( z R + z 0 ) T ( z R + z 0 ) ] Δ z R ,

Metrics