Abstract

An approach is presented for evaluating the performance achieved by a closed-loop adaptive-optics system that is employed with an astronomical telescope. This method applies to systems incorporating one or several guide stars, a wave-front reconstruction algorithm that is equivalent to a matrix multiply, and one or several deformable mirrors that are optically conjugate to different ranges. System performance is evaluated in terms of residual mean-square phase distortion and the associated optical transfer function. This evaluation accounts for the effects of the atmospheric turbulence Cn2(h) and wind profiles, the wave-front sensor and deformable-mirror fitting error, the sensor noise, the control-system bandwidth, and the net anisoplanatism for a given constellation of natural and/or laser guide stars. Optimal wave-front reconstruction algorithms are derived that minimize the telescope’s field-of-view-averaged residual mean-square phase distortion. Numerical results are presented for adaptive-optics configurations incorporating a single guide star and a single deformable mirror, multiple guide stars and a single deformable mirror, or multiple guide stars and two deformable mirrors.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (20)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (93)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription