Abstract

Using the rigorous wave-front formulation for scalar wave diffraction of Kraus [ J. Opt. Soc. Am. A6, 1196 ( 1989); J. Opt. Soc. Am. A9, 1132 ( 1992)], it is shown that the two-dimensional integral used to calculate the diffraction of spherical waves by a circular aperture may be reduced to a one-dimensional integral by choosing an appropriate coordinate frame. Both the two-dimensional integral and the one-dimensional integral must be evaluated numerically, but because each dimension must be sampled at approximately N locations to calculate accurately the integral (where N is the number of wavelengths across the aperture) the two-dimensional integration will require of the order of N2 evaluations of the integrand, whereas the one-dimensional integration will require of the order of only N evaluations, a substantial decrease in computing time for apertures that are large compared with optical wavelengths.

© 1994 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription