Abstract

Evidence bearing on the question of whether first-order and second-order motion are detected by use of the same or different principles has been sought. This question was approached by measuring thresholds for correctly identifying the direction of motion of various second-order motion patterns. The patterns used were contrast-modulated noise patterns in which the contrast of a carrier was modulated sinusoidally in one dimension, and the modulating waveform drifted smoothly while the carrier itself remained stationary. The carrier used was in most cases static two-dimensional noise; other carriers gave similar results. Thresholds were measured in terms of amplitude of contrast modulation (modulation depth) for each of a range of envelope drift speeds and spatial frequencies in the fovea and at several viewing eccentricities. Along with direction-identification thresholds, thresholds for either simple detection of the modulation or for correctly identifying the orientation of the modulation were simultaneously measured. Thresholds for direction identification were generally somewhat higher than those for simple detection. However, they were in most cases very similar to thresholds for identification of orientation, as found for conventional luminance gratings. Contrary to some reports, sensitivity to contrast-modulated patterns declines with eccentricity at a similar rate to that found with luminance gratings. The results suggest that first-order and second-order motion are either detected by a common motion-detection mechanism or are detected by different mechanisms that use a common principle of motion detection.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
    [Crossref]
  2. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [Crossref] [PubMed]
  3. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
    [Crossref] [PubMed]
  4. O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
    [Crossref]
  5. S. M. Anstis, “The perception of apparent movement,” Philos. Trans. R. Soc. London Ser. B 290, 153–168 (1980).
    [Crossref]
  6. A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
    [Crossref] [PubMed]
  7. M. Green, “Contrast detection and direction discrimination of drifting gratings,” Vision Res. 23, 281–289 (1983).
    [Crossref] [PubMed]
  8. D. H. Kelly, “Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity,” J. Opt. Soc. Am. A 1, 107–113 (1984).
    [Crossref] [PubMed]
  9. A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
    [Crossref] [PubMed]
  10. G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
    [Crossref]
  11. W. Weibull, “A statistical distribution function of wide applicability,”J. Appl. Mech. 18, 292–297 (1951).
  12. D. H. Foster, W. F. Bischof, “Thresholds from psychometric functions: superiority of bootstrap to incremental and probit variance estimators,” Psychol. Bull. 109, 152–159 (1991).
    [Crossref]
  13. A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex patterns?” Vision Res. 25, 1869–1878 (1985).
    [Crossref]
  14. A. M. Derrington, D. R. Badcock, “Detection of spatial beats: non-linearity or contrast increment detection,” Vision Res. 26, 343–348 (1986).
    [Crossref]
  15. D. R. Badcock, A. M. Derrington, “Detecting the displacement of spatial beats: no role for distortion products,” Vision Res. 29, 731–739 (1989).
    [Crossref]
  16. J. A. Solomon, G. Sperling, “Can we see 2nd order motion and texture in the periphery?” Invest. Ophthalmol. Vis. Sci. 32, 714 (1991).
  17. M. A. Georgeson, M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
    [Crossref] [PubMed]
  18. T. D. Albright, “Centrifugal direction bias in the middle temporal visual area (MT) of the macaque,” Vis. Neurosci. 2, 177–188 (1989).
    [Crossref]
  19. J. S. Pointer, R. F. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
    [Crossref] [PubMed]
  20. D. H. Kelly, “Motion and vision. II. Stabilized spatiotemporal threshold surface,”J. Opt. Soc. Am. 69, 1340–1349 (1979).
    [Crossref] [PubMed]
  21. P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
    [Crossref] [PubMed]
  22. H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Vis. Neurosci. 9, 79–97 (1992).
    [Crossref] [PubMed]
  23. V. P. Ferrera, H. R. Wilson, “Perceived direction of moving two-dimensional patterns,” Vision Res. 30, 273–287 (1990).
    [Crossref] [PubMed]
  24. T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
    [Crossref] [PubMed]
  25. Y. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–100 (1993).
    [Crossref] [PubMed]
  26. A. Johnston, P. W. McOwen, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
    [Crossref]
  27. N. M. Grzywacz, “One-path model for contrast-independent perception of Fourier and non-Fourier motions,” Invest. Ophthalmol. Vis. Sci. 33, 954 (1992).
  28. D. Marr, S. Ullman, “Directional selectivity and its use in early visual processing,” Proc. R. Soc. London Ser. B 211, 151–180 (1981).
    [Crossref]
  29. A. T. Smith, R. F. Hess, J. C. L. Baker, “Direction-identification thresholds for second-order motion stimuli,” Perception 21, 46 (1992).

1993 (1)

Y. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–100 (1993).
[Crossref] [PubMed]

1992 (7)

A. Johnston, P. W. McOwen, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[Crossref]

N. M. Grzywacz, “One-path model for contrast-independent perception of Fourier and non-Fourier motions,” Invest. Ophthalmol. Vis. Sci. 33, 954 (1992).

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[Crossref] [PubMed]

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Vis. Neurosci. 9, 79–97 (1992).
[Crossref] [PubMed]

T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
[Crossref] [PubMed]

A. T. Smith, R. F. Hess, J. C. L. Baker, “Direction-identification thresholds for second-order motion stimuli,” Perception 21, 46 (1992).

A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
[Crossref] [PubMed]

1991 (2)

D. H. Foster, W. F. Bischof, “Thresholds from psychometric functions: superiority of bootstrap to incremental and probit variance estimators,” Psychol. Bull. 109, 152–159 (1991).
[Crossref]

J. A. Solomon, G. Sperling, “Can we see 2nd order motion and texture in the periphery?” Invest. Ophthalmol. Vis. Sci. 32, 714 (1991).

1990 (1)

V. P. Ferrera, H. R. Wilson, “Perceived direction of moving two-dimensional patterns,” Vision Res. 30, 273–287 (1990).
[Crossref] [PubMed]

1989 (4)

T. D. Albright, “Centrifugal direction bias in the middle temporal visual area (MT) of the macaque,” Vis. Neurosci. 2, 177–188 (1989).
[Crossref]

J. S. Pointer, R. F. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
[Crossref] [PubMed]

D. R. Badcock, A. M. Derrington, “Detecting the displacement of spatial beats: no role for distortion products,” Vision Res. 29, 731–739 (1989).
[Crossref]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[Crossref]

1988 (1)

1986 (1)

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: non-linearity or contrast increment detection,” Vision Res. 26, 343–348 (1986).
[Crossref]

1985 (2)

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex patterns?” Vision Res. 25, 1869–1878 (1985).
[Crossref]

E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[Crossref] [PubMed]

1984 (1)

1983 (1)

M. Green, “Contrast detection and direction discrimination of drifting gratings,” Vision Res. 23, 281–289 (1983).
[Crossref] [PubMed]

1981 (1)

D. Marr, S. Ullman, “Directional selectivity and its use in early visual processing,” Proc. R. Soc. London Ser. B 211, 151–180 (1981).
[Crossref]

1980 (3)

O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
[Crossref]

S. M. Anstis, “The perception of apparent movement,” Philos. Trans. R. Soc. London Ser. B 290, 153–168 (1980).
[Crossref]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[Crossref] [PubMed]

1979 (1)

1978 (1)

M. A. Georgeson, M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
[Crossref] [PubMed]

1975 (1)

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
[Crossref]

1951 (1)

W. Weibull, “A statistical distribution function of wide applicability,”J. Appl. Mech. 18, 292–297 (1951).

Adelson, E. H.

Albright, T. D.

T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
[Crossref] [PubMed]

T. D. Albright, “Centrifugal direction bias in the middle temporal visual area (MT) of the macaque,” Vis. Neurosci. 2, 177–188 (1989).
[Crossref]

Anstis, S. M.

S. M. Anstis, “The perception of apparent movement,” Philos. Trans. R. Soc. London Ser. B 290, 153–168 (1980).
[Crossref]

Badcock, D. R.

D. R. Badcock, A. M. Derrington, “Detecting the displacement of spatial beats: no role for distortion products,” Vision Res. 29, 731–739 (1989).
[Crossref]

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: non-linearity or contrast increment detection,” Vision Res. 26, 343–348 (1986).
[Crossref]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex patterns?” Vision Res. 25, 1869–1878 (1985).
[Crossref]

Baker, C. L.

Y. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–100 (1993).
[Crossref] [PubMed]

Baker, J. C. L.

A. T. Smith, R. F. Hess, J. C. L. Baker, “Direction-identification thresholds for second-order motion stimuli,” Perception 21, 46 (1992).

Bergen, J. R.

Bischof, W. F.

D. H. Foster, W. F. Bischof, “Thresholds from psychometric functions: superiority of bootstrap to incremental and probit variance estimators,” Psychol. Bull. 109, 152–159 (1991).
[Crossref]

Braddick, O. J.

O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
[Crossref]

Broadbent, D. E.

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
[Crossref]

Buxton, H.

A. Johnston, P. W. McOwen, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[Crossref]

Cavanagh, P.

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[Crossref] [PubMed]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[Crossref]

Chubb, C.

Derrington, A. M.

D. R. Badcock, A. M. Derrington, “Detecting the displacement of spatial beats: no role for distortion products,” Vision Res. 29, 731–739 (1989).
[Crossref]

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: non-linearity or contrast increment detection,” Vision Res. 26, 343–348 (1986).
[Crossref]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex patterns?” Vision Res. 25, 1869–1878 (1985).
[Crossref]

Ferrera, V. P.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Vis. Neurosci. 9, 79–97 (1992).
[Crossref] [PubMed]

V. P. Ferrera, H. R. Wilson, “Perceived direction of moving two-dimensional patterns,” Vision Res. 30, 273–287 (1990).
[Crossref] [PubMed]

Foster, D. H.

D. H. Foster, W. F. Bischof, “Thresholds from psychometric functions: superiority of bootstrap to incremental and probit variance estimators,” Psychol. Bull. 109, 152–159 (1991).
[Crossref]

Georgeson, M. A.

M. A. Georgeson, M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
[Crossref] [PubMed]

Green, M.

M. Green, “Contrast detection and direction discrimination of drifting gratings,” Vision Res. 23, 281–289 (1983).
[Crossref] [PubMed]

Grzywacz, N. M.

N. M. Grzywacz, “One-path model for contrast-independent perception of Fourier and non-Fourier motions,” Invest. Ophthalmol. Vis. Sci. 33, 954 (1992).

Harris, M. G.

M. A. Georgeson, M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
[Crossref] [PubMed]

Henning, G. B.

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
[Crossref]

Hertz, B. G.

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
[Crossref]

Hess, R. F.

A. T. Smith, R. F. Hess, J. C. L. Baker, “Direction-identification thresholds for second-order motion stimuli,” Perception 21, 46 (1992).

J. S. Pointer, R. F. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
[Crossref] [PubMed]

Johnston, A.

A. Johnston, P. W. McOwen, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[Crossref]

Kelly, D. H.

Marr, D.

D. Marr, S. Ullman, “Directional selectivity and its use in early visual processing,” Proc. R. Soc. London Ser. B 211, 151–180 (1981).
[Crossref]

Mather, G.

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[Crossref]

McOwen, P. W.

A. Johnston, P. W. McOwen, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[Crossref]

Murphy, B. J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[Crossref] [PubMed]

Nachmias, J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[Crossref] [PubMed]

Pantle, A.

Pointer, J. S.

J. S. Pointer, R. F. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
[Crossref] [PubMed]

Smith, A. T.

A. T. Smith, R. F. Hess, J. C. L. Baker, “Direction-identification thresholds for second-order motion stimuli,” Perception 21, 46 (1992).

Solomon, J. A.

J. A. Solomon, G. Sperling, “Can we see 2nd order motion and texture in the periphery?” Invest. Ophthalmol. Vis. Sci. 32, 714 (1991).

Sperling, G.

J. A. Solomon, G. Sperling, “Can we see 2nd order motion and texture in the periphery?” Invest. Ophthalmol. Vis. Sci. 32, 714 (1991).

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[Crossref] [PubMed]

Thompson, P. G.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[Crossref] [PubMed]

Ullman, S.

D. Marr, S. Ullman, “Directional selectivity and its use in early visual processing,” Proc. R. Soc. London Ser. B 211, 151–180 (1981).
[Crossref]

Watson, A. B.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[Crossref] [PubMed]

Weibull, W.

W. Weibull, “A statistical distribution function of wide applicability,”J. Appl. Mech. 18, 292–297 (1951).

Wilson, H. R.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Vis. Neurosci. 9, 79–97 (1992).
[Crossref] [PubMed]

V. P. Ferrera, H. R. Wilson, “Perceived direction of moving two-dimensional patterns,” Vision Res. 30, 273–287 (1990).
[Crossref] [PubMed]

Yo, C.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Vis. Neurosci. 9, 79–97 (1992).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–100 (1993).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

J. A. Solomon, G. Sperling, “Can we see 2nd order motion and texture in the periphery?” Invest. Ophthalmol. Vis. Sci. 32, 714 (1991).

N. M. Grzywacz, “One-path model for contrast-independent perception of Fourier and non-Fourier motions,” Invest. Ophthalmol. Vis. Sci. 33, 954 (1992).

J. Appl. Mech. (1)

W. Weibull, “A statistical distribution function of wide applicability,”J. Appl. Mech. 18, 292–297 (1951).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Perception (2)

A. T. Smith, R. F. Hess, J. C. L. Baker, “Direction-identification thresholds for second-order motion stimuli,” Perception 21, 46 (1992).

M. A. Georgeson, M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
[Crossref] [PubMed]

Philos. Trans. R. Soc. London Ser. B (2)

O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
[Crossref]

S. M. Anstis, “The perception of apparent movement,” Philos. Trans. R. Soc. London Ser. B 290, 153–168 (1980).
[Crossref]

Proc. R. Soc. London Ser. B (2)

D. Marr, S. Ullman, “Directional selectivity and its use in early visual processing,” Proc. R. Soc. London Ser. B 211, 151–180 (1981).
[Crossref]

A. Johnston, P. W. McOwen, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[Crossref]

Psychol. Bull. (1)

D. H. Foster, W. F. Bischof, “Thresholds from psychometric functions: superiority of bootstrap to incremental and probit variance estimators,” Psychol. Bull. 109, 152–159 (1991).
[Crossref]

Science (3)

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[Crossref] [PubMed]

T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
[Crossref] [PubMed]

Y. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–100 (1993).
[Crossref] [PubMed]

Spatial Vision (1)

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[Crossref]

Vis. Neurosci. (2)

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Vis. Neurosci. 9, 79–97 (1992).
[Crossref] [PubMed]

T. D. Albright, “Centrifugal direction bias in the middle temporal visual area (MT) of the macaque,” Vis. Neurosci. 2, 177–188 (1989).
[Crossref]

Vision Res. (8)

J. S. Pointer, R. F. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
[Crossref] [PubMed]

V. P. Ferrera, H. R. Wilson, “Perceived direction of moving two-dimensional patterns,” Vision Res. 30, 273–287 (1990).
[Crossref] [PubMed]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex patterns?” Vision Res. 25, 1869–1878 (1985).
[Crossref]

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: non-linearity or contrast increment detection,” Vision Res. 26, 343–348 (1986).
[Crossref]

D. R. Badcock, A. M. Derrington, “Detecting the displacement of spatial beats: no role for distortion products,” Vision Res. 29, 731–739 (1989).
[Crossref]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[Crossref] [PubMed]

M. Green, “Contrast detection and direction discrimination of drifting gratings,” Vision Res. 23, 281–289 (1983).
[Crossref] [PubMed]

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Luminance profiles describing the images used. Each waveform shows luminance as a function of spatial position along a section through the image in the horizontal direction. A, Noise formed by assigning each pixel to be either light or dark at random. B, A sine wave. C, Taking the product of A and B yields noise whose amplitude is modulated sinusoidally. If the sine wave is drifted (i.e., its phase is continuously incremented) but the noise remains stationary, second-order motion is produced.

Fig. 2
Fig. 2

Typical psychometric functions obtained for one subject (TL) at a drift speed of 6 deg/s. Functions for detection (filled circles) and direction (open circles) are shown, together with the 75% performance points at 6.5% and 12.2% contrast, respectively. These values, together with those for various other drift speeds, are shown in Fig. 3.

Fig. 3
Fig. 3

Thresholds for simple detection (filled circles) and direction identification (open circles) for sinusoidal modulation (1 c/deg) of a two-dimensional static noise carrier, as a function of the drift speed of the envelope. Data are shown separately for two subjects (TL and TF). Error bars show ±1 standard deviation of the threshold, estimated using a bootstrapping procedure.12

Fig. 4
Fig. 4

Histogram showing thresholds for detection (open bars) and direction identification (hatched bars) for sinusoidal modulation of each of a variety of carriers. The spatial frequency of the envelope was 1 c/deg, and its drift speed was 4 deg/s in all cases. 1-D, one-dimensional; 2-D, two-dimensional.

Fig. 5
Fig. 5

Thresholds for detection of the orientation (filled circles) and direction (open circles) of a sinusoidally (1 c/deg) contrast-modulated two-dimensional static noise carrier as a function of the drift speed of the envelope. Data are shown separately for two subjects. Error bars show ±1 standard deviation.

Fig. 6
Fig. 6

Thresholds for detection of the orientation (filled circles) and direction (open circles) of a sinusoidally contrast-modulated two-dimensional static noise carrier as a function of the spatial frequency of the envelope. The drift rate was 4 Hz. Data are shown separately for two subjects. Error bars show ±1 standard deviation.

Fig. 7
Fig. 7

Thresholds for detection of the orientation (filled circles) and direction (open circles) of a sinusoidally contrast-modulated two-dimensional static noise carrier as a function of the drift speed (at 1 c/deg, top) and spatial frequency (at 4 Hz, bottom) of the envelope. The image was presented at an eccentricity of 12°. Error bars show ±1 standard deviation.

Fig. 8
Fig. 8

Threshold sensitivity for detection of the orientation (filled circles) and direction (open circles) of a drifting sine grating (top) and a sinusoidally contrast-modulated two-dimensional static noise carrier (bottom) as a function of viewing eccentricity. Sensitivity at each eccentricity is shown relative to foveal sensitivity.

Fig. 9
Fig. 9

Same as Fig. 8 but with a different subject (CW).

Fig. 10
Fig. 10

Thresholds for detection of the orientation (filled circles) and direction (open circles) of a sinusoidally contrast-modulated two-dimensional static noise carrier as a function of the drift speed of the envelope, with the image centrally fixated (top) or with fixation at an eccentricity of 12° (bottom). Error bars show ±1 standard deviation.

Fig. 11
Fig. 11

Thresholds for simple detection (filled circles) and direction identification (open circles) for sinusoidal modulation (0.5 c/deg) of a 3.5-c/deg grating carrier as a function of the drift speed of the envelope. The viewing eccentricity was 8°. Error bars show ±1 standard deviation.

Fig. 12
Fig. 12

Replotting of the data shown in Fig. 9 as the ratio of direction sensitivity to orientation sensitivity in central vision (triangles) and at an eccentricity of 12° (squares).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M = ( C max - C min ) / ( C max + C min ) ,

Metrics