Abstract

Pulsed fluoroscopy at reduced frame rates can be used to lower x-ray dose with equivalent detection (hereafter called equivalent perception) of low-contrast, stationary objects. Experimentally average dose savings of 22%, 38%, and 49%, for pulsed fluoroscopy at 15, 10, and 7.5 acquisitions per second, respectively, are documented. Dose savings depend on object size, with fewer savings for smaller objects. To explain these data, we extend the framework of an ideal observer with three models for the spatiotemporal response of the human visual system (HVS). They are model 1, separable; model 2, nonseparable; and model 3, nonseparable with internal observer noise. With no free parameters, model 1 predicts the average dose savings within a 3% difference but does not describe the effect of object size. Models 2 and 3 explain the influence of size, and model 3, with a single free parameter, fits the measurements best. Perception of pulsed fluoroscopy is thus well described in terms of spatiotemporal processing by the HVS.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
    [CrossRef] [PubMed]
  2. R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Comparison of detectability in pulsed versus continuous fluoroscopy: a simulation study,” in Medical Imaging VI: Image Capture, Formatting, and Display, Y. Kim, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1653, 374–378 (1992).
    [CrossRef]
  3. B. Berthelsen, Å. Cederblad, “Radiation dose to patients and personnel involved in embolization of intercerebral arteriovenous malformations,” Acta Radiol. 32, 492–497 (1991).
    [CrossRef] [PubMed]
  4. B. D. Lindsey, J. O. Eichling, D. Ambos, M. E. Cain, “Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia,” Am. J. Cardiol. 70, 218–223 (1992).
    [CrossRef]
  5. J. H. Grollman, H. Klosterman, M. W. Herman, C. L. Moler, L. M. Eber, R. N. MacAlpin, “Dose reduction low pulse-rate fluoroscopy,” Radiology 105, 293–298 (1972).
    [PubMed]
  6. J. H. Grollman, “Radiation reduction by means of low pulse-rate fluoroscopy during cardiac catheterization and coronary arteriography,” Am. J. Roentgenol. 121, 636–641 (1974).
    [CrossRef]
  7. M. A. Wondrow, A. A. Bove, D. R. Holmes, J. E. Gray, P. R. Julsrud, “Technical consideration for a new x-ray video progressive scanning system for cardiac catherization,” Catheter. Cardiovasc. Diagn. 14, 126–134 (1988).
    [CrossRef]
  8. D. R. Holmes, M. A. Wondrow, J. E. Gray, R. J. Vetter, J. L. Fellows, P. R. Julsrud, “Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory,” J. Am. Coll. Cardiol. 15, 159–162 (1990).
    [CrossRef] [PubMed]
  9. R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Extension of the ideal observer model to pulsed fluoroscopic imaging,” Radiology 185(p), 305 (1992).
  10. S. L. Fritz, S. E. Mirvis, S. O. Pais, S. Roys, “Phantom evaluation of angiographer performance using low frame rate acquisition fluoroscopy,” Med. Phys. 15, 600–603 (1988).
    [CrossRef] [PubMed]
  11. R. F. Wagner, “Decision theory and the detail signal-to-noise ratio of Otto Schade,” Photogr. Sci. Eng. 22, 41–46 (1978).
  12. M. Wolf, R. F. Wagner, “Comments on: Decision theory and the detail signal-to-noise of Otto Schade,” Photogr. Sci. Eng. 22, 336–337 (1978).
  13. R. F. Wagner, D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys. Med. Biol. 30, 489–518 (1985).
    [CrossRef]
  14. M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. 3. Effect of pixel size on snr and threshold contrast,” Med. Phys. 12, 201–209 (1985).
    [CrossRef] [PubMed]
  15. M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
    [PubMed]
  16. W. M. Gentles, T. Nguyen, W. Ho, C. Caldwell, L. Ehrlich, C. Leonhardt, R. Reed, “Effect of spatial frequency content of the background on visual detection of a known target,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 341–351 (1992).
    [CrossRef]
  17. K. Ohara, H.-P. Chan, K. Doi, M. L. Giger, H. Fujita, “Investigation of basic imaging properties in digital radiography. 8. Detection of simulated low-contrast objects in digital subtraction angiographic images,” Med. Phys. 13, 304–311 (1986).
    [CrossRef] [PubMed]
  18. P. Judy, R. G. Swensson, “Lesion detection and signal-to-noise ratio in CT images,” Med. Phys. 8, 13–23 (1981).
    [CrossRef] [PubMed]
  19. A. E. Burgess, “Effect on quantization noise on visual signal detection in noisy images,” J. Opt. Soc. Am. A 2, 1424–1428 (1985).
    [CrossRef] [PubMed]
  20. R. F. Wagner, K. J. Myers, K. M. Hanson, “Task performance on constrained reconstructions: human observer performance compared with sub-optimal Bayesian performance,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 352–362 (1992).
    [CrossRef]
  21. K. M. Hanson, “Method of evaluating image-recovery algorithms based on task performance,” J. Opt. Soc. Am. A 7, 1294–1304 (1990).
    [CrossRef]
  22. J. Whiting, D. Honig, E. Carterette, N. Eigler, “Observer performance in dynamic displays: effect of frame rate on visual signal detection in noisy images,” in Human Vision, Visual Processing, and Digital Display II, J. P. Allebach, M. H. Brill, B. E. Rogowitz, Proc. Soc. Photo-Opt. Instrum. Eng.1453, 165–176 (1991).
    [CrossRef]
  23. D. G. Pelli, “The quantum efficiency of vision,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge, U. Press, New York, 1990), pp. 1–24.
  24. D. H. Kelly, “Motion and vision. II. Stabilized spatiotemporal threshold surface,” J. Opt. Soc. Am. 69, 1340–1349 (1979).
    [CrossRef] [PubMed]
  25. D. H. Kelly, “Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity,” J. Opt. Soc. Am. 1, 107–113 (1984).
    [CrossRef]
  26. C. A. Burbeck, D. H. Kelly, “Spatiotemporal characteristics of visual mechanisms: excitatory-inhibitory model,” J. Opt. Soc. Am. 70, 1121–1126 (1980).
    [CrossRef] [PubMed]
  27. V. Virsu, J. Rovamo, P. Laurinen, R. Nasanen, “Temporal contrast sensitivity and cortical magnification,” Vision Res. 22, 1211–1217 (1982).
    [CrossRef] [PubMed]
  28. J. G. Robson, “Spatial and temporal contrast-sensitivity functions of the human visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
    [CrossRef]
  29. D. J. Tolhurst, J. A. Movshon, “Spatial and temporal contrast sensitivity of striate cortical neurons,” Nature (London) 257, 674–675 (1975).
    [CrossRef]
  30. W. H. Merigan, C. E. Byrne, J. R. Maunsell, “Does primate motion perception depend on the magnocellular pathway?” J. Neurosci. 11, 3422–3429 (1991).
    [PubMed]
  31. A. E. Burgess, R. F. Wagner, R. Jennings, H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93–94 (1981).
    [CrossRef] [PubMed]
  32. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196–208 (1948).
    [CrossRef] [PubMed]
  33. L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
    [CrossRef] [PubMed]
  34. L. D. Loo, K. Doi, C. E. Metz, “A comparison of physical image quality indexes and observer performance in the radiographic detection of nylon beads,” Phys. Med. Biol. 29, 837–856 (1984).
    [CrossRef] [PubMed]
  35. R. G. Swensson, P. Judy, “Detection of noisy visual targets: models for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981).
    [CrossRef] [PubMed]
  36. A. E. Burgess, B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617–627 (1988).
    [CrossRef] [PubMed]
  37. A. E. Burgess, “High level visual decision efficiencies,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, New York, 1990), pp. 431–440.
  38. A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  39. S. M. Kay, J. S. L. Marple, “Spectrum analysis—a modern perspective,” Proc. IEEE 69, 1380–1419 (1981).
    [CrossRef]
  40. W. S. Geisler, K. D. Davila, “Ideal discriminators in spatial vision: two-point stimuli,” J. Opt. Soc. Am. A 2, 1483–1497 (1985).
    [CrossRef] [PubMed]
  41. O. H. Schade, “An evaluation of photographic image quality and resolving power,” J. Soc. Motion Pict. Tel. Eng. 73, 81–119 (1964).
  42. C. W. Thomas, G. C. Gilmore, F. L. Royer, “Models of contrast sensitivity in human vision,” IEEE Trans. Syst. Man Cybern. 23, 857–864 (1993).
    [CrossRef]
  43. F. van Nes, J. J. Koenderink, H. Nas, M. A. Bouman, “Spatiotemporal modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 1082–1088 (1967).
    [CrossRef] [PubMed]
  44. D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am. A 56, 1628–1633 (1966).
    [CrossRef]
  45. A. Grace, Optimization Toolbox for Use with MATLAB (Math Works, Natick, Mass., 1990).
  46. K. Ohara, K. Doi, C. E. Metz, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 13. Effect of simple structured noise on the detectability of simulated stenotic lesions,” Med. Phys. 16, 14–21 (1989).
    [CrossRef] [PubMed]
  47. A. Fiorentini, G. Baumgartner, S. Magnussen, P. H. Schiller, J. P. Thomas, “The perception of brightness and darkness: relations to neuronal receptive fields,” in Visual Perception: The Neurophysiological Foundations, L. Spillmann, J. S. Werner, eds. (Academic, San Diego, Calif., 1990), pp. 129–161.
  48. D. Regan, K. I. Beverly, “Visual fields described by contrast sensitivity, by acuity and by relative sensitivity to different orientations,” Invest. Ophthalmol. Visual Sci. 24, 754–759 (1983).
  49. R. Sekular, R. Blake, Perception (McGraw-Hill, New York, 1990).
  50. D. J. Goodenough, C. E. Metz, “Implications of a ‘noisy’ observer to data processing techniques,” in Information Processing in Scintigraphy, C. Raynard, A. E. Todd-Pokropek, eds. (Commissariat à l’Energie Atomique, Orsay, France, 1975).
  51. D. G. Pelli, “The spatiotemporal spectrum of the equivalent noise of human vision,” Invest. Ophthalmol. Visual Sci. Suppl. 4, 46 (1983).
  52. H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).
  53. A. B. Watson, “Probability summation over time,” Vision Res. 19, 512–522 (1979).
    [CrossRef]

1994 (1)

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

1993 (1)

C. W. Thomas, G. C. Gilmore, F. L. Royer, “Models of contrast sensitivity in human vision,” IEEE Trans. Syst. Man Cybern. 23, 857–864 (1993).
[CrossRef]

1992 (2)

B. D. Lindsey, J. O. Eichling, D. Ambos, M. E. Cain, “Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia,” Am. J. Cardiol. 70, 218–223 (1992).
[CrossRef]

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Extension of the ideal observer model to pulsed fluoroscopic imaging,” Radiology 185(p), 305 (1992).

1991 (2)

B. Berthelsen, Å. Cederblad, “Radiation dose to patients and personnel involved in embolization of intercerebral arteriovenous malformations,” Acta Radiol. 32, 492–497 (1991).
[CrossRef] [PubMed]

W. H. Merigan, C. E. Byrne, J. R. Maunsell, “Does primate motion perception depend on the magnocellular pathway?” J. Neurosci. 11, 3422–3429 (1991).
[PubMed]

1990 (2)

K. M. Hanson, “Method of evaluating image-recovery algorithms based on task performance,” J. Opt. Soc. Am. A 7, 1294–1304 (1990).
[CrossRef]

D. R. Holmes, M. A. Wondrow, J. E. Gray, R. J. Vetter, J. L. Fellows, P. R. Julsrud, “Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory,” J. Am. Coll. Cardiol. 15, 159–162 (1990).
[CrossRef] [PubMed]

1989 (1)

K. Ohara, K. Doi, C. E. Metz, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 13. Effect of simple structured noise on the detectability of simulated stenotic lesions,” Med. Phys. 16, 14–21 (1989).
[CrossRef] [PubMed]

1988 (3)

M. A. Wondrow, A. A. Bove, D. R. Holmes, J. E. Gray, P. R. Julsrud, “Technical consideration for a new x-ray video progressive scanning system for cardiac catherization,” Catheter. Cardiovasc. Diagn. 14, 126–134 (1988).
[CrossRef]

S. L. Fritz, S. E. Mirvis, S. O. Pais, S. Roys, “Phantom evaluation of angiographer performance using low frame rate acquisition fluoroscopy,” Med. Phys. 15, 600–603 (1988).
[CrossRef] [PubMed]

A. E. Burgess, B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617–627 (1988).
[CrossRef] [PubMed]

1986 (1)

K. Ohara, H.-P. Chan, K. Doi, M. L. Giger, H. Fujita, “Investigation of basic imaging properties in digital radiography. 8. Detection of simulated low-contrast objects in digital subtraction angiographic images,” Med. Phys. 13, 304–311 (1986).
[CrossRef] [PubMed]

1985 (5)

A. E. Burgess, “Effect on quantization noise on visual signal detection in noisy images,” J. Opt. Soc. Am. A 2, 1424–1428 (1985).
[CrossRef] [PubMed]

R. F. Wagner, D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys. Med. Biol. 30, 489–518 (1985).
[CrossRef]

M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. 3. Effect of pixel size on snr and threshold contrast,” Med. Phys. 12, 201–209 (1985).
[CrossRef] [PubMed]

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

W. S. Geisler, K. D. Davila, “Ideal discriminators in spatial vision: two-point stimuli,” J. Opt. Soc. Am. A 2, 1483–1497 (1985).
[CrossRef] [PubMed]

1984 (3)

L. D. Loo, K. Doi, C. E. Metz, “A comparison of physical image quality indexes and observer performance in the radiographic detection of nylon beads,” Phys. Med. Biol. 29, 837–856 (1984).
[CrossRef] [PubMed]

D. H. Kelly, “Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity,” J. Opt. Soc. Am. 1, 107–113 (1984).
[CrossRef]

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

1983 (2)

D. Regan, K. I. Beverly, “Visual fields described by contrast sensitivity, by acuity and by relative sensitivity to different orientations,” Invest. Ophthalmol. Visual Sci. 24, 754–759 (1983).

D. G. Pelli, “The spatiotemporal spectrum of the equivalent noise of human vision,” Invest. Ophthalmol. Visual Sci. Suppl. 4, 46 (1983).

1982 (1)

V. Virsu, J. Rovamo, P. Laurinen, R. Nasanen, “Temporal contrast sensitivity and cortical magnification,” Vision Res. 22, 1211–1217 (1982).
[CrossRef] [PubMed]

1981 (4)

A. E. Burgess, R. F. Wagner, R. Jennings, H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

R. G. Swensson, P. Judy, “Detection of noisy visual targets: models for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981).
[CrossRef] [PubMed]

S. M. Kay, J. S. L. Marple, “Spectrum analysis—a modern perspective,” Proc. IEEE 69, 1380–1419 (1981).
[CrossRef]

P. Judy, R. G. Swensson, “Lesion detection and signal-to-noise ratio in CT images,” Med. Phys. 8, 13–23 (1981).
[CrossRef] [PubMed]

1980 (1)

1979 (2)

1978 (2)

R. F. Wagner, “Decision theory and the detail signal-to-noise ratio of Otto Schade,” Photogr. Sci. Eng. 22, 41–46 (1978).

M. Wolf, R. F. Wagner, “Comments on: Decision theory and the detail signal-to-noise of Otto Schade,” Photogr. Sci. Eng. 22, 336–337 (1978).

1975 (1)

D. J. Tolhurst, J. A. Movshon, “Spatial and temporal contrast sensitivity of striate cortical neurons,” Nature (London) 257, 674–675 (1975).
[CrossRef]

1974 (1)

J. H. Grollman, “Radiation reduction by means of low pulse-rate fluoroscopy during cardiac catheterization and coronary arteriography,” Am. J. Roentgenol. 121, 636–641 (1974).
[CrossRef]

1972 (1)

J. H. Grollman, H. Klosterman, M. W. Herman, C. L. Moler, L. M. Eber, R. N. MacAlpin, “Dose reduction low pulse-rate fluoroscopy,” Radiology 105, 293–298 (1972).
[PubMed]

1967 (1)

1966 (2)

1964 (1)

O. H. Schade, “An evaluation of photographic image quality and resolving power,” J. Soc. Motion Pict. Tel. Eng. 73, 81–119 (1964).

1958 (1)

H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).

1948 (1)

Ambos, D.

B. D. Lindsey, J. O. Eichling, D. Ambos, M. E. Cain, “Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia,” Am. J. Cardiol. 70, 218–223 (1992).
[CrossRef]

Aufrichtig, R.

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Extension of the ideal observer model to pulsed fluoroscopic imaging,” Radiology 185(p), 305 (1992).

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Comparison of detectability in pulsed versus continuous fluoroscopy: a simulation study,” in Medical Imaging VI: Image Capture, Formatting, and Display, Y. Kim, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1653, 374–378 (1992).
[CrossRef]

Barlow, H. B.

A. E. Burgess, R. F. Wagner, R. Jennings, H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).

Baumgartner, G.

A. Fiorentini, G. Baumgartner, S. Magnussen, P. H. Schiller, J. P. Thomas, “The perception of brightness and darkness: relations to neuronal receptive fields,” in Visual Perception: The Neurophysiological Foundations, L. Spillmann, J. S. Werner, eds. (Academic, San Diego, Calif., 1990), pp. 129–161.

Berthelsen, B.

B. Berthelsen, Å. Cederblad, “Radiation dose to patients and personnel involved in embolization of intercerebral arteriovenous malformations,” Acta Radiol. 32, 492–497 (1991).
[CrossRef] [PubMed]

Beverly, K. I.

D. Regan, K. I. Beverly, “Visual fields described by contrast sensitivity, by acuity and by relative sensitivity to different orientations,” Invest. Ophthalmol. Visual Sci. 24, 754–759 (1983).

Blake, R.

R. Sekular, R. Blake, Perception (McGraw-Hill, New York, 1990).

Bouman, M. A.

Bove, A. A.

M. A. Wondrow, A. A. Bove, D. R. Holmes, J. E. Gray, P. R. Julsrud, “Technical consideration for a new x-ray video progressive scanning system for cardiac catherization,” Catheter. Cardiovasc. Diagn. 14, 126–134 (1988).
[CrossRef]

Brown, D. G.

R. F. Wagner, D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys. Med. Biol. 30, 489–518 (1985).
[CrossRef]

Burbeck, C. A.

Burgess, A. E.

A. E. Burgess, B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617–627 (1988).
[CrossRef] [PubMed]

A. E. Burgess, “Effect on quantization noise on visual signal detection in noisy images,” J. Opt. Soc. Am. A 2, 1424–1428 (1985).
[CrossRef] [PubMed]

A. E. Burgess, R. F. Wagner, R. Jennings, H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

A. E. Burgess, “High level visual decision efficiencies,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, New York, 1990), pp. 431–440.

Byrne, C. E.

W. H. Merigan, C. E. Byrne, J. R. Maunsell, “Does primate motion perception depend on the magnocellular pathway?” J. Neurosci. 11, 3422–3429 (1991).
[PubMed]

Cain, M. E.

B. D. Lindsey, J. O. Eichling, D. Ambos, M. E. Cain, “Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia,” Am. J. Cardiol. 70, 218–223 (1992).
[CrossRef]

Caldwell, C.

W. M. Gentles, T. Nguyen, W. Ho, C. Caldwell, L. Ehrlich, C. Leonhardt, R. Reed, “Effect of spatial frequency content of the background on visual detection of a known target,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 341–351 (1992).
[CrossRef]

Carterette, E.

J. Whiting, D. Honig, E. Carterette, N. Eigler, “Observer performance in dynamic displays: effect of frame rate on visual signal detection in noisy images,” in Human Vision, Visual Processing, and Digital Display II, J. P. Allebach, M. H. Brill, B. E. Rogowitz, Proc. Soc. Photo-Opt. Instrum. Eng.1453, 165–176 (1991).
[CrossRef]

Cederblad, Å.

B. Berthelsen, Å. Cederblad, “Radiation dose to patients and personnel involved in embolization of intercerebral arteriovenous malformations,” Acta Radiol. 32, 492–497 (1991).
[CrossRef] [PubMed]

Chan, H.-P.

K. Ohara, H.-P. Chan, K. Doi, M. L. Giger, H. Fujita, “Investigation of basic imaging properties in digital radiography. 8. Detection of simulated low-contrast objects in digital subtraction angiographic images,” Med. Phys. 13, 304–311 (1986).
[CrossRef] [PubMed]

Colborne, B.

Davila, K. D.

Doi, K.

K. Ohara, K. Doi, C. E. Metz, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 13. Effect of simple structured noise on the detectability of simulated stenotic lesions,” Med. Phys. 16, 14–21 (1989).
[CrossRef] [PubMed]

K. Ohara, H.-P. Chan, K. Doi, M. L. Giger, H. Fujita, “Investigation of basic imaging properties in digital radiography. 8. Detection of simulated low-contrast objects in digital subtraction angiographic images,” Med. Phys. 13, 304–311 (1986).
[CrossRef] [PubMed]

M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. 3. Effect of pixel size on snr and threshold contrast,” Med. Phys. 12, 201–209 (1985).
[CrossRef] [PubMed]

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

L. D. Loo, K. Doi, C. E. Metz, “A comparison of physical image quality indexes and observer performance in the radiographic detection of nylon beads,” Phys. Med. Biol. 29, 837–856 (1984).
[CrossRef] [PubMed]

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

Eber, L. M.

J. H. Grollman, H. Klosterman, M. W. Herman, C. L. Moler, L. M. Eber, R. N. MacAlpin, “Dose reduction low pulse-rate fluoroscopy,” Radiology 105, 293–298 (1972).
[PubMed]

Ehrlich, L.

W. M. Gentles, T. Nguyen, W. Ho, C. Caldwell, L. Ehrlich, C. Leonhardt, R. Reed, “Effect of spatial frequency content of the background on visual detection of a known target,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 341–351 (1992).
[CrossRef]

Eichling, J. O.

B. D. Lindsey, J. O. Eichling, D. Ambos, M. E. Cain, “Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia,” Am. J. Cardiol. 70, 218–223 (1992).
[CrossRef]

Eigler, N.

J. Whiting, D. Honig, E. Carterette, N. Eigler, “Observer performance in dynamic displays: effect of frame rate on visual signal detection in noisy images,” in Human Vision, Visual Processing, and Digital Display II, J. P. Allebach, M. H. Brill, B. E. Rogowitz, Proc. Soc. Photo-Opt. Instrum. Eng.1453, 165–176 (1991).
[CrossRef]

Fellows, J. L.

D. R. Holmes, M. A. Wondrow, J. E. Gray, R. J. Vetter, J. L. Fellows, P. R. Julsrud, “Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory,” J. Am. Coll. Cardiol. 15, 159–162 (1990).
[CrossRef] [PubMed]

Fiorentini, A.

A. Fiorentini, G. Baumgartner, S. Magnussen, P. H. Schiller, J. P. Thomas, “The perception of brightness and darkness: relations to neuronal receptive fields,” in Visual Perception: The Neurophysiological Foundations, L. Spillmann, J. S. Werner, eds. (Academic, San Diego, Calif., 1990), pp. 129–161.

Fritz, S. L.

S. L. Fritz, S. E. Mirvis, S. O. Pais, S. Roys, “Phantom evaluation of angiographer performance using low frame rate acquisition fluoroscopy,” Med. Phys. 15, 600–603 (1988).
[CrossRef] [PubMed]

Fujita, H.

K. Ohara, H.-P. Chan, K. Doi, M. L. Giger, H. Fujita, “Investigation of basic imaging properties in digital radiography. 8. Detection of simulated low-contrast objects in digital subtraction angiographic images,” Med. Phys. 13, 304–311 (1986).
[CrossRef] [PubMed]

Geisler, W. S.

Gentles, W. M.

W. M. Gentles, T. Nguyen, W. Ho, C. Caldwell, L. Ehrlich, C. Leonhardt, R. Reed, “Effect of spatial frequency content of the background on visual detection of a known target,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 341–351 (1992).
[CrossRef]

Giger, M. L.

K. Ohara, K. Doi, C. E. Metz, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 13. Effect of simple structured noise on the detectability of simulated stenotic lesions,” Med. Phys. 16, 14–21 (1989).
[CrossRef] [PubMed]

K. Ohara, H.-P. Chan, K. Doi, M. L. Giger, H. Fujita, “Investigation of basic imaging properties in digital radiography. 8. Detection of simulated low-contrast objects in digital subtraction angiographic images,” Med. Phys. 13, 304–311 (1986).
[CrossRef] [PubMed]

M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. 3. Effect of pixel size on snr and threshold contrast,” Med. Phys. 12, 201–209 (1985).
[CrossRef] [PubMed]

Gilmore, G. C.

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

C. W. Thomas, G. C. Gilmore, F. L. Royer, “Models of contrast sensitivity in human vision,” IEEE Trans. Syst. Man Cybern. 23, 857–864 (1993).
[CrossRef]

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Extension of the ideal observer model to pulsed fluoroscopic imaging,” Radiology 185(p), 305 (1992).

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Comparison of detectability in pulsed versus continuous fluoroscopy: a simulation study,” in Medical Imaging VI: Image Capture, Formatting, and Display, Y. Kim, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1653, 374–378 (1992).
[CrossRef]

Goodenough, D. J.

D. J. Goodenough, C. E. Metz, “Implications of a ‘noisy’ observer to data processing techniques,” in Information Processing in Scintigraphy, C. Raynard, A. E. Todd-Pokropek, eds. (Commissariat à l’Energie Atomique, Orsay, France, 1975).

Grace, A.

A. Grace, Optimization Toolbox for Use with MATLAB (Math Works, Natick, Mass., 1990).

Gray, J. E.

D. R. Holmes, M. A. Wondrow, J. E. Gray, R. J. Vetter, J. L. Fellows, P. R. Julsrud, “Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory,” J. Am. Coll. Cardiol. 15, 159–162 (1990).
[CrossRef] [PubMed]

M. A. Wondrow, A. A. Bove, D. R. Holmes, J. E. Gray, P. R. Julsrud, “Technical consideration for a new x-ray video progressive scanning system for cardiac catherization,” Catheter. Cardiovasc. Diagn. 14, 126–134 (1988).
[CrossRef]

Grollman, J. H.

J. H. Grollman, “Radiation reduction by means of low pulse-rate fluoroscopy during cardiac catheterization and coronary arteriography,” Am. J. Roentgenol. 121, 636–641 (1974).
[CrossRef]

J. H. Grollman, H. Klosterman, M. W. Herman, C. L. Moler, L. M. Eber, R. N. MacAlpin, “Dose reduction low pulse-rate fluoroscopy,” Radiology 105, 293–298 (1972).
[PubMed]

Hanson, K. M.

K. M. Hanson, “Method of evaluating image-recovery algorithms based on task performance,” J. Opt. Soc. Am. A 7, 1294–1304 (1990).
[CrossRef]

R. F. Wagner, K. J. Myers, K. M. Hanson, “Task performance on constrained reconstructions: human observer performance compared with sub-optimal Bayesian performance,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 352–362 (1992).
[CrossRef]

Herman, M. W.

J. H. Grollman, H. Klosterman, M. W. Herman, C. L. Moler, L. M. Eber, R. N. MacAlpin, “Dose reduction low pulse-rate fluoroscopy,” Radiology 105, 293–298 (1972).
[PubMed]

Ho, W.

W. M. Gentles, T. Nguyen, W. Ho, C. Caldwell, L. Ehrlich, C. Leonhardt, R. Reed, “Effect of spatial frequency content of the background on visual detection of a known target,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 341–351 (1992).
[CrossRef]

Holmes, D. R.

D. R. Holmes, M. A. Wondrow, J. E. Gray, R. J. Vetter, J. L. Fellows, P. R. Julsrud, “Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory,” J. Am. Coll. Cardiol. 15, 159–162 (1990).
[CrossRef] [PubMed]

M. A. Wondrow, A. A. Bove, D. R. Holmes, J. E. Gray, P. R. Julsrud, “Technical consideration for a new x-ray video progressive scanning system for cardiac catherization,” Catheter. Cardiovasc. Diagn. 14, 126–134 (1988).
[CrossRef]

Honig, D.

J. Whiting, D. Honig, E. Carterette, N. Eigler, “Observer performance in dynamic displays: effect of frame rate on visual signal detection in noisy images,” in Human Vision, Visual Processing, and Digital Display II, J. P. Allebach, M. H. Brill, B. E. Rogowitz, Proc. Soc. Photo-Opt. Instrum. Eng.1453, 165–176 (1991).
[CrossRef]

Ishida, M.

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

Jennings, R.

A. E. Burgess, R. F. Wagner, R. Jennings, H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

Judy, P.

R. G. Swensson, P. Judy, “Detection of noisy visual targets: models for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981).
[CrossRef] [PubMed]

P. Judy, R. G. Swensson, “Lesion detection and signal-to-noise ratio in CT images,” Med. Phys. 8, 13–23 (1981).
[CrossRef] [PubMed]

Julsrud, P. R.

D. R. Holmes, M. A. Wondrow, J. E. Gray, R. J. Vetter, J. L. Fellows, P. R. Julsrud, “Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory,” J. Am. Coll. Cardiol. 15, 159–162 (1990).
[CrossRef] [PubMed]

M. A. Wondrow, A. A. Bove, D. R. Holmes, J. E. Gray, P. R. Julsrud, “Technical consideration for a new x-ray video progressive scanning system for cardiac catherization,” Catheter. Cardiovasc. Diagn. 14, 126–134 (1988).
[CrossRef]

Kay, S. M.

S. M. Kay, J. S. L. Marple, “Spectrum analysis—a modern perspective,” Proc. IEEE 69, 1380–1419 (1981).
[CrossRef]

Kelly, D. H.

Klosterman, H.

J. H. Grollman, H. Klosterman, M. W. Herman, C. L. Moler, L. M. Eber, R. N. MacAlpin, “Dose reduction low pulse-rate fluoroscopy,” Radiology 105, 293–298 (1972).
[PubMed]

Koenderink, J. J.

Laurinen, P.

V. Virsu, J. Rovamo, P. Laurinen, R. Nasanen, “Temporal contrast sensitivity and cortical magnification,” Vision Res. 22, 1211–1217 (1982).
[CrossRef] [PubMed]

Lehr, J. L.

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

Leonhardt, C.

W. M. Gentles, T. Nguyen, W. Ho, C. Caldwell, L. Ehrlich, C. Leonhardt, R. Reed, “Effect of spatial frequency content of the background on visual detection of a known target,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 341–351 (1992).
[CrossRef]

Lindsey, B. D.

B. D. Lindsey, J. O. Eichling, D. Ambos, M. E. Cain, “Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia,” Am. J. Cardiol. 70, 218–223 (1992).
[CrossRef]

Loo, L. D.

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

L. D. Loo, K. Doi, C. E. Metz, “A comparison of physical image quality indexes and observer performance in the radiographic detection of nylon beads,” Phys. Med. Biol. 29, 837–856 (1984).
[CrossRef] [PubMed]

Loo, L.-N.

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

MacAlpin, R. N.

J. H. Grollman, H. Klosterman, M. W. Herman, C. L. Moler, L. M. Eber, R. N. MacAlpin, “Dose reduction low pulse-rate fluoroscopy,” Radiology 105, 293–298 (1972).
[PubMed]

Magnussen, S.

A. Fiorentini, G. Baumgartner, S. Magnussen, P. H. Schiller, J. P. Thomas, “The perception of brightness and darkness: relations to neuronal receptive fields,” in Visual Perception: The Neurophysiological Foundations, L. Spillmann, J. S. Werner, eds. (Academic, San Diego, Calif., 1990), pp. 129–161.

Marple, J. S. L.

S. M. Kay, J. S. L. Marple, “Spectrum analysis—a modern perspective,” Proc. IEEE 69, 1380–1419 (1981).
[CrossRef]

Maunsell, J. R.

W. H. Merigan, C. E. Byrne, J. R. Maunsell, “Does primate motion perception depend on the magnocellular pathway?” J. Neurosci. 11, 3422–3429 (1991).
[PubMed]

Merigan, W. H.

W. H. Merigan, C. E. Byrne, J. R. Maunsell, “Does primate motion perception depend on the magnocellular pathway?” J. Neurosci. 11, 3422–3429 (1991).
[PubMed]

Metz, C. E.

K. Ohara, K. Doi, C. E. Metz, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 13. Effect of simple structured noise on the detectability of simulated stenotic lesions,” Med. Phys. 16, 14–21 (1989).
[CrossRef] [PubMed]

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

L. D. Loo, K. Doi, C. E. Metz, “A comparison of physical image quality indexes and observer performance in the radiographic detection of nylon beads,” Phys. Med. Biol. 29, 837–856 (1984).
[CrossRef] [PubMed]

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

D. J. Goodenough, C. E. Metz, “Implications of a ‘noisy’ observer to data processing techniques,” in Information Processing in Scintigraphy, C. Raynard, A. E. Todd-Pokropek, eds. (Commissariat à l’Energie Atomique, Orsay, France, 1975).

Mirvis, S. E.

S. L. Fritz, S. E. Mirvis, S. O. Pais, S. Roys, “Phantom evaluation of angiographer performance using low frame rate acquisition fluoroscopy,” Med. Phys. 15, 600–603 (1988).
[CrossRef] [PubMed]

Moler, C. L.

J. H. Grollman, H. Klosterman, M. W. Herman, C. L. Moler, L. M. Eber, R. N. MacAlpin, “Dose reduction low pulse-rate fluoroscopy,” Radiology 105, 293–298 (1972).
[PubMed]

Movshon, J. A.

D. J. Tolhurst, J. A. Movshon, “Spatial and temporal contrast sensitivity of striate cortical neurons,” Nature (London) 257, 674–675 (1975).
[CrossRef]

Myers, K. J.

R. F. Wagner, K. J. Myers, K. M. Hanson, “Task performance on constrained reconstructions: human observer performance compared with sub-optimal Bayesian performance,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 352–362 (1992).
[CrossRef]

Nas, H.

Nasanen, R.

V. Virsu, J. Rovamo, P. Laurinen, R. Nasanen, “Temporal contrast sensitivity and cortical magnification,” Vision Res. 22, 1211–1217 (1982).
[CrossRef] [PubMed]

Nguyen, T.

W. M. Gentles, T. Nguyen, W. Ho, C. Caldwell, L. Ehrlich, C. Leonhardt, R. Reed, “Effect of spatial frequency content of the background on visual detection of a known target,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 341–351 (1992).
[CrossRef]

Ohara, K.

K. Ohara, K. Doi, C. E. Metz, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 13. Effect of simple structured noise on the detectability of simulated stenotic lesions,” Med. Phys. 16, 14–21 (1989).
[CrossRef] [PubMed]

K. Ohara, H.-P. Chan, K. Doi, M. L. Giger, H. Fujita, “Investigation of basic imaging properties in digital radiography. 8. Detection of simulated low-contrast objects in digital subtraction angiographic images,” Med. Phys. 13, 304–311 (1986).
[CrossRef] [PubMed]

Oppenheim, A. V.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

Pais, S. O.

S. L. Fritz, S. E. Mirvis, S. O. Pais, S. Roys, “Phantom evaluation of angiographer performance using low frame rate acquisition fluoroscopy,” Med. Phys. 15, 600–603 (1988).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli, “The spatiotemporal spectrum of the equivalent noise of human vision,” Invest. Ophthalmol. Visual Sci. Suppl. 4, 46 (1983).

D. G. Pelli, “The quantum efficiency of vision,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge, U. Press, New York, 1990), pp. 1–24.

Reed, R.

W. M. Gentles, T. Nguyen, W. Ho, C. Caldwell, L. Ehrlich, C. Leonhardt, R. Reed, “Effect of spatial frequency content of the background on visual detection of a known target,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 341–351 (1992).
[CrossRef]

Regan, D.

D. Regan, K. I. Beverly, “Visual fields described by contrast sensitivity, by acuity and by relative sensitivity to different orientations,” Invest. Ophthalmol. Visual Sci. 24, 754–759 (1983).

Robson, J. G.

Rose, A.

Rovamo, J.

V. Virsu, J. Rovamo, P. Laurinen, R. Nasanen, “Temporal contrast sensitivity and cortical magnification,” Vision Res. 22, 1211–1217 (1982).
[CrossRef] [PubMed]

Royer, F. L.

C. W. Thomas, G. C. Gilmore, F. L. Royer, “Models of contrast sensitivity in human vision,” IEEE Trans. Syst. Man Cybern. 23, 857–864 (1993).
[CrossRef]

Roys, S.

S. L. Fritz, S. E. Mirvis, S. O. Pais, S. Roys, “Phantom evaluation of angiographer performance using low frame rate acquisition fluoroscopy,” Med. Phys. 15, 600–603 (1988).
[CrossRef] [PubMed]

Schade, O. H.

O. H. Schade, “An evaluation of photographic image quality and resolving power,” J. Soc. Motion Pict. Tel. Eng. 73, 81–119 (1964).

Schafer, R. W.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

Schiller, P. H.

A. Fiorentini, G. Baumgartner, S. Magnussen, P. H. Schiller, J. P. Thomas, “The perception of brightness and darkness: relations to neuronal receptive fields,” in Visual Perception: The Neurophysiological Foundations, L. Spillmann, J. S. Werner, eds. (Academic, San Diego, Calif., 1990), pp. 129–161.

Sekular, R.

R. Sekular, R. Blake, Perception (McGraw-Hill, New York, 1990).

Swensson, R. G.

R. G. Swensson, P. Judy, “Detection of noisy visual targets: models for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981).
[CrossRef] [PubMed]

P. Judy, R. G. Swensson, “Lesion detection and signal-to-noise ratio in CT images,” Med. Phys. 8, 13–23 (1981).
[CrossRef] [PubMed]

Thomas, C. W.

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

C. W. Thomas, G. C. Gilmore, F. L. Royer, “Models of contrast sensitivity in human vision,” IEEE Trans. Syst. Man Cybern. 23, 857–864 (1993).
[CrossRef]

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Extension of the ideal observer model to pulsed fluoroscopic imaging,” Radiology 185(p), 305 (1992).

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Comparison of detectability in pulsed versus continuous fluoroscopy: a simulation study,” in Medical Imaging VI: Image Capture, Formatting, and Display, Y. Kim, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1653, 374–378 (1992).
[CrossRef]

Thomas, J. P.

A. Fiorentini, G. Baumgartner, S. Magnussen, P. H. Schiller, J. P. Thomas, “The perception of brightness and darkness: relations to neuronal receptive fields,” in Visual Perception: The Neurophysiological Foundations, L. Spillmann, J. S. Werner, eds. (Academic, San Diego, Calif., 1990), pp. 129–161.

Tolhurst, D. J.

D. J. Tolhurst, J. A. Movshon, “Spatial and temporal contrast sensitivity of striate cortical neurons,” Nature (London) 257, 674–675 (1975).
[CrossRef]

van Nes, F.

Vetter, R. J.

D. R. Holmes, M. A. Wondrow, J. E. Gray, R. J. Vetter, J. L. Fellows, P. R. Julsrud, “Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory,” J. Am. Coll. Cardiol. 15, 159–162 (1990).
[CrossRef] [PubMed]

Virsu, V.

V. Virsu, J. Rovamo, P. Laurinen, R. Nasanen, “Temporal contrast sensitivity and cortical magnification,” Vision Res. 22, 1211–1217 (1982).
[CrossRef] [PubMed]

Wagner, R. F.

R. F. Wagner, D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys. Med. Biol. 30, 489–518 (1985).
[CrossRef]

A. E. Burgess, R. F. Wagner, R. Jennings, H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

M. Wolf, R. F. Wagner, “Comments on: Decision theory and the detail signal-to-noise of Otto Schade,” Photogr. Sci. Eng. 22, 336–337 (1978).

R. F. Wagner, “Decision theory and the detail signal-to-noise ratio of Otto Schade,” Photogr. Sci. Eng. 22, 41–46 (1978).

R. F. Wagner, K. J. Myers, K. M. Hanson, “Task performance on constrained reconstructions: human observer performance compared with sub-optimal Bayesian performance,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 352–362 (1992).
[CrossRef]

Watson, A. B.

A. B. Watson, “Probability summation over time,” Vision Res. 19, 512–522 (1979).
[CrossRef]

Whiting, J.

J. Whiting, D. Honig, E. Carterette, N. Eigler, “Observer performance in dynamic displays: effect of frame rate on visual signal detection in noisy images,” in Human Vision, Visual Processing, and Digital Display II, J. P. Allebach, M. H. Brill, B. E. Rogowitz, Proc. Soc. Photo-Opt. Instrum. Eng.1453, 165–176 (1991).
[CrossRef]

Wilson, D. L.

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Extension of the ideal observer model to pulsed fluoroscopic imaging,” Radiology 185(p), 305 (1992).

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Comparison of detectability in pulsed versus continuous fluoroscopy: a simulation study,” in Medical Imaging VI: Image Capture, Formatting, and Display, Y. Kim, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1653, 374–378 (1992).
[CrossRef]

Wolf, M.

M. Wolf, R. F. Wagner, “Comments on: Decision theory and the detail signal-to-noise of Otto Schade,” Photogr. Sci. Eng. 22, 336–337 (1978).

Wondrow, M. A.

D. R. Holmes, M. A. Wondrow, J. E. Gray, R. J. Vetter, J. L. Fellows, P. R. Julsrud, “Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory,” J. Am. Coll. Cardiol. 15, 159–162 (1990).
[CrossRef] [PubMed]

M. A. Wondrow, A. A. Bove, D. R. Holmes, J. E. Gray, P. R. Julsrud, “Technical consideration for a new x-ray video progressive scanning system for cardiac catherization,” Catheter. Cardiovasc. Diagn. 14, 126–134 (1988).
[CrossRef]

Xue, P.

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

Acta Radiol. (1)

B. Berthelsen, Å. Cederblad, “Radiation dose to patients and personnel involved in embolization of intercerebral arteriovenous malformations,” Acta Radiol. 32, 492–497 (1991).
[CrossRef] [PubMed]

Am. J. Cardiol. (1)

B. D. Lindsey, J. O. Eichling, D. Ambos, M. E. Cain, “Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia,” Am. J. Cardiol. 70, 218–223 (1992).
[CrossRef]

Am. J. Roentgenol. (1)

J. H. Grollman, “Radiation reduction by means of low pulse-rate fluoroscopy during cardiac catheterization and coronary arteriography,” Am. J. Roentgenol. 121, 636–641 (1974).
[CrossRef]

Catheter. Cardiovasc. Diagn. (1)

M. A. Wondrow, A. A. Bove, D. R. Holmes, J. E. Gray, P. R. Julsrud, “Technical consideration for a new x-ray video progressive scanning system for cardiac catherization,” Catheter. Cardiovasc. Diagn. 14, 126–134 (1988).
[CrossRef]

IEEE Trans. Syst. Man Cybern. (1)

C. W. Thomas, G. C. Gilmore, F. L. Royer, “Models of contrast sensitivity in human vision,” IEEE Trans. Syst. Man Cybern. 23, 857–864 (1993).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

D. Regan, K. I. Beverly, “Visual fields described by contrast sensitivity, by acuity and by relative sensitivity to different orientations,” Invest. Ophthalmol. Visual Sci. 24, 754–759 (1983).

Invest. Ophthalmol. Visual Sci. Suppl. (1)

D. G. Pelli, “The spatiotemporal spectrum of the equivalent noise of human vision,” Invest. Ophthalmol. Visual Sci. Suppl. 4, 46 (1983).

J. Am. Coll. Cardiol. (1)

D. R. Holmes, M. A. Wondrow, J. E. Gray, R. J. Vetter, J. L. Fellows, P. R. Julsrud, “Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory,” J. Am. Coll. Cardiol. 15, 159–162 (1990).
[CrossRef] [PubMed]

J. Neurosci. (1)

W. H. Merigan, C. E. Byrne, J. R. Maunsell, “Does primate motion perception depend on the magnocellular pathway?” J. Neurosci. 11, 3422–3429 (1991).
[PubMed]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (5)

J. Physiol. (London) (1)

H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).

J. Soc. Motion Pict. Tel. Eng. (1)

O. H. Schade, “An evaluation of photographic image quality and resolving power,” J. Soc. Motion Pict. Tel. Eng. 73, 81–119 (1964).

Med. Phys. (7)

K. Ohara, K. Doi, C. E. Metz, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 13. Effect of simple structured noise on the detectability of simulated stenotic lesions,” Med. Phys. 16, 14–21 (1989).
[CrossRef] [PubMed]

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

S. L. Fritz, S. E. Mirvis, S. O. Pais, S. Roys, “Phantom evaluation of angiographer performance using low frame rate acquisition fluoroscopy,” Med. Phys. 15, 600–603 (1988).
[CrossRef] [PubMed]

M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. 3. Effect of pixel size on snr and threshold contrast,” Med. Phys. 12, 201–209 (1985).
[CrossRef] [PubMed]

K. Ohara, H.-P. Chan, K. Doi, M. L. Giger, H. Fujita, “Investigation of basic imaging properties in digital radiography. 8. Detection of simulated low-contrast objects in digital subtraction angiographic images,” Med. Phys. 13, 304–311 (1986).
[CrossRef] [PubMed]

P. Judy, R. G. Swensson, “Lesion detection and signal-to-noise ratio in CT images,” Med. Phys. 8, 13–23 (1981).
[CrossRef] [PubMed]

Nature (London) (1)

D. J. Tolhurst, J. A. Movshon, “Spatial and temporal contrast sensitivity of striate cortical neurons,” Nature (London) 257, 674–675 (1975).
[CrossRef]

Percept. Psychophys. (1)

R. G. Swensson, P. Judy, “Detection of noisy visual targets: models for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981).
[CrossRef] [PubMed]

Photogr. Sci. Eng. (2)

R. F. Wagner, “Decision theory and the detail signal-to-noise ratio of Otto Schade,” Photogr. Sci. Eng. 22, 41–46 (1978).

M. Wolf, R. F. Wagner, “Comments on: Decision theory and the detail signal-to-noise of Otto Schade,” Photogr. Sci. Eng. 22, 336–337 (1978).

Phys. Med. Biol. (2)

R. F. Wagner, D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys. Med. Biol. 30, 489–518 (1985).
[CrossRef]

L. D. Loo, K. Doi, C. E. Metz, “A comparison of physical image quality indexes and observer performance in the radiographic detection of nylon beads,” Phys. Med. Biol. 29, 837–856 (1984).
[CrossRef] [PubMed]

Proc. IEEE (1)

S. M. Kay, J. S. L. Marple, “Spectrum analysis—a modern perspective,” Proc. IEEE 69, 1380–1419 (1981).
[CrossRef]

Radiology (3)

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

J. H. Grollman, H. Klosterman, M. W. Herman, C. L. Moler, L. M. Eber, R. N. MacAlpin, “Dose reduction low pulse-rate fluoroscopy,” Radiology 105, 293–298 (1972).
[PubMed]

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Extension of the ideal observer model to pulsed fluoroscopic imaging,” Radiology 185(p), 305 (1992).

Science (1)

A. E. Burgess, R. F. Wagner, R. Jennings, H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

Vision Res. (2)

V. Virsu, J. Rovamo, P. Laurinen, R. Nasanen, “Temporal contrast sensitivity and cortical magnification,” Vision Res. 22, 1211–1217 (1982).
[CrossRef] [PubMed]

A. B. Watson, “Probability summation over time,” Vision Res. 19, 512–522 (1979).
[CrossRef]

Other (11)

A. Fiorentini, G. Baumgartner, S. Magnussen, P. H. Schiller, J. P. Thomas, “The perception of brightness and darkness: relations to neuronal receptive fields,” in Visual Perception: The Neurophysiological Foundations, L. Spillmann, J. S. Werner, eds. (Academic, San Diego, Calif., 1990), pp. 129–161.

R. Sekular, R. Blake, Perception (McGraw-Hill, New York, 1990).

D. J. Goodenough, C. E. Metz, “Implications of a ‘noisy’ observer to data processing techniques,” in Information Processing in Scintigraphy, C. Raynard, A. E. Todd-Pokropek, eds. (Commissariat à l’Energie Atomique, Orsay, France, 1975).

A. Grace, Optimization Toolbox for Use with MATLAB (Math Works, Natick, Mass., 1990).

J. Whiting, D. Honig, E. Carterette, N. Eigler, “Observer performance in dynamic displays: effect of frame rate on visual signal detection in noisy images,” in Human Vision, Visual Processing, and Digital Display II, J. P. Allebach, M. H. Brill, B. E. Rogowitz, Proc. Soc. Photo-Opt. Instrum. Eng.1453, 165–176 (1991).
[CrossRef]

D. G. Pelli, “The quantum efficiency of vision,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge, U. Press, New York, 1990), pp. 1–24.

R. F. Wagner, K. J. Myers, K. M. Hanson, “Task performance on constrained reconstructions: human observer performance compared with sub-optimal Bayesian performance,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 352–362 (1992).
[CrossRef]

A. E. Burgess, “High level visual decision efficiencies,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, New York, 1990), pp. 431–440.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

R. Aufrichtig, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Comparison of detectability in pulsed versus continuous fluoroscopy: a simulation study,” in Medical Imaging VI: Image Capture, Formatting, and Display, Y. Kim, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1653, 374–378 (1992).
[CrossRef]

W. M. Gentles, T. Nguyen, W. Ho, C. Caldwell, L. Ehrlich, C. Leonhardt, R. Reed, “Effect of spatial frequency content of the background on visual detection of a known target,” in Medical Imaging VI: Image Processing, M. H. Loew, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1652, 341–351 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Observer model modified to characterize human detectability in image sequences. The observer task is to detect a known object (a disk) in a noisy sequence. The input image sequence is initially filtered by the spatiotemporal response Vst(u, v, f) of the HVS. Next the observer detector, which consists of a spatial matched filter ΔS(u, v) modified by the spatiotemporal response of the HVS at f = 0, Vst(u, v, 0), maximizes the SNR of the test object. We include internal observer noise Pi, which is independent of the input sequence. Human detection occurs when the output SNR exceeds a threshold.

Fig. 2
Fig. 2

Temporal response of the HVS as obtained from human image-perception flicker experiments. The normalized data (×) are obtained from Fig. 7 of Kelly.25 The smooth curve is a low-pass filter model fit to the data [Eq. (25)]. The parameters are fc = 10.3 Hz and β = 1.44.

Fig. 3
Fig. 3

Noise power spectra for (a) the input and (b) the output of the HVS temporal filter for each of the four acquisition types identified in the legends. The input curves are given by Eq. (10) with σ2 = 1 and Δt = 1/30 s. With decreasing acquisition rates the input power spectra have progressively more energy at lower frequencies. The low-pass filter of the HVS, specified by Eq. (25) and shown in Fig. 2, attenuates the frequency content above ≈ 2 Hz.

Fig. 4
Fig. 4

Integrand of Eq. (15) G(u, v, f), evaluated as a function of temporal frequency f and horizontal spatial frequency u, with vertical spatial frequency v = 0. In each plot both a perspective view of the surface and a contour map are shown. The signal spectrum ΔS(u, v) is that of a disk. (a) Continuous (k = 1) and disk radius rd = 16 pixels, (b) pulsed-7.5 (k = 4) and rd = 16 pixels, (c) k = 1 and rd = 4 pixels, (d) k = 4 and rd = 4 pixels.

Fig. 5
Fig. 5

Equivalent-perception dose values predicted by model 1 compared with data from paired-comparison, min-contrast, and forced-choice experiments for a disk of radius 8 pixels. The experimental error bars are 95% confidence limits for the paired-comparison test and 1 standard deviation for the min-contrast and forced-choice tests. The different experimental measures, which are taken from Fig. 12 of Aufrichtig et al.,1 agree well. The forced-choice experiment is done only for pulsed-15. The model and the measurements also match very well, and the average absolute difference in equivalent-perception dose is 3%.

Fig. 6
Fig. 6

Equivalent-perception dose for pulsed predicted by model 2 compared with paired-comparison experiments as a function of disk size and acquisition rate.1 Although absolute agreement is imperfect, equivalent-perception dose increases with smaller disk size in both the data and the model. The numbers on top of the bars are the experimental and predicted values for the equivalent-perception doses.

Fig. 7
Fig. 7

Equivalent-perception dose for pulsed predicted by model 3 compared with paired-comparison experiments as a function of disk size and acquisition rate.1 The numbers on top of the bars are the experimental and predicted values for the equivalent-perception doses. Agreement is quite good, and the average absolute difference in equivalent-perception dose is 7%.

Fig. 8
Fig. 8

Equivalent-perception dose for pulsed as a function of disk size and acquisition rate. The data points and the 95% confidence intervals are determined from paired-comparison experiments.1 The three curves represent predicted values from model 3.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

SNR = S N = Δ S ( u , v ) 2 d u d v [ Δ S ( u , v ) 2 P n ( u , v ) d u d v ] 1 / 2 ,
SNR s = S s N s = Δ S ( u , v ) V s ( u , v ) 2 d u d v [ Δ S ( u , v ) V s ( u , v ) 2 V s 2 ( u , v ) P n ( u , v ) d u d v ] 1 / 2 ,
SNR s = S s ( N s 2 + N i 2 ) 1 / 2 = Δ S ( u , v ) V s ( u , v ) 2 d u d v { [ Δ S ( u , v ) V s ( u , v ) 2 V s 2 ( u , v ) P n ( u , v ) + Δ S ( u , v ) V s ( u , v ) 2 P i ] d u d v } 1 / 2 .
SNR st = S st ( N st 2 + N i 2 ) 1 / 2 = Δ S ( u , v ) V st ( u , v , 0 ) 2 d u d v [ Δ S ( u , v ) V st ( u , v , 0 ) 2 V st 2 ( u , v , f ) P n ( u , v , f ) d u d v d f + Δ S ( u , v ) V st ( u , v , 0 ) 2 P i d u d v ] 1 / 2 .
q k ( n ) = { a , a , , a k , b , b , , b k , c , } ,             k = 1 , 2 , ;             n = 1 , 2 , , N .
q k ( n ) = h k ( n ) z k ( n ) ,
h k ( n ) = { 1 , 1 , , 1 k } ,
z k ( n ) = { q 1 ( m ) m = 1 , 2 , , N / k ; n = k ( m - 1 ) + 1 0 otherwise ( n N ) .
P z k ( f ) = σ 2 k Δ t .
P q k ( f ) = H k ( f ) 2 P z k ( f ) = | sin ( k π f Δ t ) sin ( π f Δ t ) | 2 σ 2 k Δ t .
P q 1 ( f ) = σ 2 30 ,             - 15 f 15.
P q 2 ( f ) = | sin ( 2 π f / 30 ) sin ( π f / 30 ) | 2 σ 2 60 ,             - 15 f 15.
P n ( u , v , f ) = P q k ( f ) Δ x Δ y = | sin ( k π f Δ t ) sin ( π f Δ t ) | 2 σ 2 k Δ t Δ x Δ y .
SNR st , k = Δ N N 0 S ( u , v ) V st ( u , v , 0 ) 2 d u d v × ( N 0 2 Γ k N 0 + γ ) 1 / 2 ,
Γ k = S ( u , v ) V st ( u , v , 0 ) 2 V st 2 ( u , v , f ) × | sin ( k π f Δ t ) sin ( π f Δ t ) | 2 Δ t k Δ x Δ y d u d v d f ,
γ = P i S ( u , v ) V st ( u , v , 0 ) 2 d u d v .
s ( r ) = circle ( r r d ) = { 1 r r d 0 otherwise .
S ( u , v ) V st ( u , v , 0 ) 2 d u d v = π r d 2 V t 2 ( 0 ) = a d V t 2 ( 0 ) ,
SNR = a d Δ N N 0 N 0 ,
N pulsed , k = Γ k N cont 2 ± [ Γ k 2 N cont 4 + 4 γ N cont 2 ( Γ 1 N cont + γ ) ] 1 / 2 2 ( Γ 1 N cont + γ ) .
Q pulsed , k = Γ k Q cont + [ Γ k 2 Q cont 2 + 4 γ ( Γ 1 Q cont + γ ) ] 1 / 2 2 ( Γ 1 Q cont + γ ) Q cont .
Q pulsed , k = Γ k Γ 1 Q cont .
Γ k sep = S ( u , v ) V s 2 ( u , v ) 2 Δ x Δ y d u d v V t 2 ( 0 ) × V t ( f ) 2 | sin ( k π f Δ t ) sin ( π f Δ t ) | 2 Δ t k d f .
Q pulsed , k = V t ( f ) 2 | sin ( k π f Δ t ) sin ( π f Δ t ) | 2 Δ t k d f V t ( f ) 2 Δ t d f Q cont .
V t ( f ) = f c 2 [ f 4 + 2 f c 2 ( 2 β 2 - 1 ) f 2 + f c 4 ] 1 / 2 ,
V st ( q , f ) = 4 π 2 q [ 6.1 + 7.3 | log ( f 3 q ) | 3 ] × exp [ - 4 π q 45.9 ( 2 π f q + 2 ) ] ,
V st ( u , v , f ) = V st [ ( u 2 + v 2 ) 1 / 2 , f ] .
F = [ ( equivalent - perception dose / acq ) × ( acq / s ) ] pulsed [ ( dose / acq ) × ( acq / s ) ] cont ,

Metrics