Abstract

We measure threshold versus contrast (TvC) functions for chromatic (red–green) and luminance sine-wave-grating stimuli for (1) the detection of luminance in the presence of color contrast and (2) the detection of color in the presence of luminance contrast. We find that, although these crossed TvC functions both display a dipperlike shape, their facilitation differs from that found for standard uncrossed dipper functions (luminance on luminance or color on color contrast). Their facilitation disappears (cross condition 1) or is reduced (cross condition 2) by randomized presentation of the phase of the test and the mask, and the remaining facilitation (cross condition 2) displays no spatial tuning. We argue that these crossed facilitatory interactions cannot be explained by detection mechanisms with common inputs from color and luminance contrast (a nonindependence of transduction), and we present evidence that instead they reflect the use of local cues in the stimuli. We also measure the luminance–luminance TvC function in the presence of a fixed suprathreshold color contrast. The results demonstrate that, even when the color contrast produces a masking of the luminance thresholds luminance–luminance facilitation still occurs. Thus the opposing effects of masking and facilitation can occur simultaneously. Furthermore, while luminance–luminance facilitation occurs independently of color contrast, masking can be produced by either contrast. This suggests that masking and facilitation have different underlying origins. Similar results are found for the color detection thresholds in the presences of a luminance pedestal. We conclude that there are separate pathways for the detection of color and luminance contrast, each with no input from the other contrast. We suggest that the cross masking reflects divisive interactions between these pathways that is restricted to high contrasts.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
    [Crossref] [PubMed]
  2. P. E. King-Smith, D. Carden, “Luminance and opponent colour contributions to visual detection and adaptation and to spatial and temporal integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
    [Crossref] [PubMed]
  3. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
    [Crossref] [PubMed]
  4. C. F. Stomeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanism controlling sensitivity to red–green chromatic flashes,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.
  5. C. F. Stomeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
    [Crossref]
  6. C. F. Stomeyer, G. R. Cole, R. E. Kroneuer, “Chromatic supression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
  7. P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
    [Crossref]
  8. G. R. Cole, T. Hine, W. H. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
    [Crossref] [PubMed]
  9. A. Chaparro, C. F. Stromeyer, R. E. Kroneauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
    [Crossref] [PubMed]
  10. K. T. Mullen, J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
    [Crossref] [PubMed]
  11. J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–31 (1986).
    [Crossref] [PubMed]
  12. E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
    [Crossref] [PubMed]
  13. G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
    [Crossref] [PubMed]
  14. M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
    [Crossref] [PubMed]
  15. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
    [Crossref]
  16. A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
    [Crossref] [PubMed]
  17. M. A. Webster, J. D. Mollon, “Changes in colour appearance following post receptoral adaptation,” Nature (London) 349, 235–238 (1991).
    [Crossref]
  18. K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
    [Crossref] [PubMed]
  19. K. K. De Valois, E. Switkes, “Simultaneous masking interactions between chromatic luminance gratings,” J. Opt. Soc. Am. 73, 11–18 (1983).
    [Crossref] [PubMed]
  20. R. T. Eskew, C. F. Stromeyer, C. J. Picotte, R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
    [Crossref] [PubMed]
  21. K. T. Mullen, “The contrast sensitivity of human colour vision to red/green and blue/yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
  22. J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Documenta Ophthalmologia ProceedingsSeries 33,G. Verriest, ed. (Junk, The Hague, 1982), pp. 61–66.
  23. P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
    [Crossref] [PubMed]
  24. K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in colour vision,” Vision Res. 32, 483–488 (1992).
    [Crossref] [PubMed]
  25. M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanism identified by simultaneous masking,” Vision Res. 34, 331–341 (1994).
    [Crossref] [PubMed]
  26. G. E. Legge, J. M. Foley, “Contrast making in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
    [Crossref] [PubMed]
  27. A. Bradley, X. Zhang, L. Thibos, “Failures of isoluminance by ocular chromatic aberration,” Appl. Opt. 31, 3657–3667 (1992).
    [Crossref] [PubMed]
  28. F. A. A. Kingdom, K. T. Mullen, “Separating colour and luminance in the brain,” Spatial Vision (to be published).
  29. K. T. Mullen, M. A. Losada, F. A. A. Kingdom, “Inherent stimulus non-linearities in the combination of color and luminance contrast,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 699 (1992).
  30. J. Nachmias, R. V. Sansbury, “Granting contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
    [Crossref] [PubMed]
  31. C. F. Stromeyer, S. Klein, “Spatial frequency channels in human vision as asymmetric (edge) mechanisms,” Vision Res. 14, 1409–1419 (1974).
    [Crossref] [PubMed]
  32. J. M. Foley, G. E. Legge, “Contrast detection and near threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
    [Crossref]
  33. D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508–1531 (1985).
    [Crossref] [PubMed]
  34. J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London Ser. B 246, 61–70 (1991).
    [Crossref]
  35. J. M. Foley, Pattern masking phenomena require a new model of human pattern vision mechanisms,” Invest. Ophthalmol. Vis. Sci 34, 819 (1993).
  36. L. A. Olzak, J. P. Thomas, “Normalizing and summing pools in complex frequency discriminations,” Invest. Ophthalmol. Vis. Sci. 34, 818 (1993).
  37. J. Nachmias, “Contrast modulated maskers: test of a late non-linearity hypothesis,” Vision Res. 29, 137–142 (1989).
    [Crossref]
  38. R. Hilz, C. R. Cavonius, “Wavelength discrimination measured with square-wave gratings,” J. Opt. Soc. Am. 60, 273–277 (1970).
    [Crossref] [PubMed]
  39. R. Hilz, G. Huppmann, C. R. Cavonius, “Influence of luminance contrast on hue discrimination,” J. Opt. Soc. Am. 64, 763–766 (1974).
    [Crossref] [PubMed]
  40. A. E. Elsner, J. Pokorny, S. A. Burns, “Chromaticity discrimination: effects of luminance contrast and spatial frequency,” J. Opt. Soc. Am. A 3, 916–919 (1986).
    [Crossref] [PubMed]
  41. R. M. Boynton, M. M. Hayhoe, D. I. A. Macleod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
    [Crossref]
  42. R. T. Eskew “The gap effect revisited: slow changes in chromatic sensitivity as affected by luminance and chromatic borders,” Vision Res. 29, 717–729 (1989).
    [Crossref] [PubMed]
  43. G. E. Legge, D. H. Parish, A. Luebker, L. H. Wurm, “Psychophysics of reading. XI. Comparing color contrast and luminance contrast,” J. Opt. Soc. Am. A 7, 2002–2010 (1990).
    [Crossref] [PubMed]
  44. W. H. McIlhagga, K. T. Mullen, “Contour detection with chromatic and luminance contrast,” Vision Res. (to be published).
  45. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [Crossref] [PubMed]

1994 (2)

A. Chaparro, C. F. Stromeyer, R. E. Kroneauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[Crossref] [PubMed]

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanism identified by simultaneous masking,” Vision Res. 34, 331–341 (1994).
[Crossref] [PubMed]

1993 (3)

J. M. Foley, Pattern masking phenomena require a new model of human pattern vision mechanisms,” Invest. Ophthalmol. Vis. Sci 34, 819 (1993).

L. A. Olzak, J. P. Thomas, “Normalizing and summing pools in complex frequency discriminations,” Invest. Ophthalmol. Vis. Sci. 34, 818 (1993).

G. R. Cole, T. Hine, W. H. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
[Crossref] [PubMed]

1992 (5)

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[Crossref] [PubMed]

K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[Crossref] [PubMed]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in colour vision,” Vision Res. 32, 483–488 (1992).
[Crossref] [PubMed]

A. Bradley, X. Zhang, L. Thibos, “Failures of isoluminance by ocular chromatic aberration,” Appl. Opt. 31, 3657–3667 (1992).
[Crossref] [PubMed]

K. T. Mullen, M. A. Losada, F. A. A. Kingdom, “Inherent stimulus non-linearities in the combination of color and luminance contrast,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 699 (1992).

1991 (3)

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post receptoral adaptation,” Nature (London) 349, 235–238 (1991).
[Crossref]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[Crossref] [PubMed]

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London Ser. B 246, 61–70 (1991).
[Crossref]

1990 (3)

1989 (2)

J. Nachmias, “Contrast modulated maskers: test of a late non-linearity hypothesis,” Vision Res. 29, 137–142 (1989).
[Crossref]

R. T. Eskew “The gap effect revisited: slow changes in chromatic sensitivity as affected by luminance and chromatic borders,” Vision Res. 29, 717–729 (1989).
[Crossref] [PubMed]

1988 (2)

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[Crossref] [PubMed]

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[Crossref] [PubMed]

1987 (2)

C. F. Stomeyer, G. R. Cole, R. E. Kroneuer, “Chromatic supression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[Crossref]

1986 (2)

1985 (3)

C. F. Stomeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[Crossref]

D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508–1531 (1985).
[Crossref] [PubMed]

K. T. Mullen, “The contrast sensitivity of human colour vision to red/green and blue/yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

1984 (1)

1983 (1)

1982 (1)

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
[Crossref]

1981 (2)

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
[Crossref] [PubMed]

J. M. Foley, G. E. Legge, “Contrast detection and near threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
[Crossref]

1980 (1)

1977 (1)

R. M. Boynton, M. M. Hayhoe, D. I. A. Macleod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
[Crossref]

1976 (1)

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

1974 (3)

R. Hilz, G. Huppmann, C. R. Cavonius, “Influence of luminance contrast on hue discrimination,” J. Opt. Soc. Am. 64, 763–766 (1974).
[Crossref] [PubMed]

J. Nachmias, R. V. Sansbury, “Granting contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[Crossref] [PubMed]

C. F. Stromeyer, S. Klein, “Spatial frequency channels in human vision as asymmetric (edge) mechanisms,” Vision Res. 14, 1409–1419 (1974).
[Crossref] [PubMed]

1971 (1)

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[Crossref] [PubMed]

1970 (1)

Akri, V.

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[Crossref] [PubMed]

Benes, S. C.

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[Crossref]

Boulton, J. C.

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in colour vision,” Vision Res. 32, 483–488 (1992).
[Crossref] [PubMed]

Boynton, R. M.

R. M. Boynton, M. M. Hayhoe, D. I. A. Macleod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
[Crossref]

Bradley, A.

Brown, A. M.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–31 (1986).
[Crossref] [PubMed]

Burns, S. A.

Carden, D.

Cavanagh, P.

Cavonius, C. R.

Chaparro, A.

A. Chaparro, C. F. Stromeyer, R. E. Kroneauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[Crossref] [PubMed]

Cole, G. R.

G. R. Cole, T. Hine, W. H. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
[Crossref] [PubMed]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[Crossref] [PubMed]

C. F. Stomeyer, G. R. Cole, R. E. Kroneuer, “Chromatic supression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).

C. F. Stomeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[Crossref]

C. F. Stomeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanism controlling sensitivity to red–green chromatic flashes,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

De Valois, K. K.

Elsner, A. E.

Eskew, R. T.

A. Chaparro, C. F. Stromeyer, R. E. Kroneauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[Crossref] [PubMed]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[Crossref] [PubMed]

R. T. Eskew “The gap effect revisited: slow changes in chromatic sensitivity as affected by luminance and chromatic borders,” Vision Res. 29, 717–729 (1989).
[Crossref] [PubMed]

Favreau, O. E.

Foley, J. M.

J. M. Foley, Pattern masking phenomena require a new model of human pattern vision mechanisms,” Invest. Ophthalmol. Vis. Sci 34, 819 (1993).

J. M. Foley, G. E. Legge, “Contrast detection and near threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
[Crossref]

G. E. Legge, J. M. Foley, “Contrast making in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
[Crossref] [PubMed]

Gegenfurtner, K. R.

Gur, M.

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[Crossref] [PubMed]

Harwerth, R. S.

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[Crossref] [PubMed]

Hayhoe, M. M.

R. M. Boynton, M. M. Hayhoe, D. I. A. Macleod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
[Crossref]

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
[Crossref]

Heuts, M. J. G.

Hilz, R.

Hine, T.

Huppmann, G.

Kingdom, F. A. A.

K. T. Mullen, M. A. Losada, F. A. A. Kingdom, “Inherent stimulus non-linearities in the combination of color and luminance contrast,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 699 (1992).

F. A. A. Kingdom, K. T. Mullen, “Separating colour and luminance in the brain,” Spatial Vision (to be published).

King-Smith, P. E.

Kiper, D. C.

Klein, S.

C. F. Stromeyer, S. Klein, “Spatial frequency channels in human vision as asymmetric (edge) mechanisms,” Vision Res. 14, 1409–1419 (1974).
[Crossref] [PubMed]

Koenderink, J. J.

Krauskopf, J.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–31 (1986).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
[Crossref]

Kronauer, R. E.

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[Crossref] [PubMed]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[Crossref] [PubMed]

C. F. Stomeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[Crossref]

C. F. Stomeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanism controlling sensitivity to red–green chromatic flashes,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

Kroneauer, R. E.

A. Chaparro, C. F. Stromeyer, R. E. Kroneauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[Crossref] [PubMed]

Kroneuer, R. E.

C. F. Stomeyer, G. R. Cole, R. E. Kroneuer, “Chromatic supression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).

Kulikowski, J. J.

Legge, G. E.

Losada, M. A.

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanism identified by simultaneous masking,” Vision Res. 34, 331–341 (1994).
[Crossref] [PubMed]

K. T. Mullen, M. A. Losada, F. A. A. Kingdom, “Inherent stimulus non-linearities in the combination of color and luminance contrast,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 699 (1992).

Luebker, A.

Macleod, D. I. A.

R. M. Boynton, M. M. Hayhoe, D. I. A. Macleod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
[Crossref]

Mandler, M. B.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–31 (1986).
[Crossref] [PubMed]

McIlhagga, W. H.

G. R. Cole, T. Hine, W. H. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
[Crossref] [PubMed]

W. H. McIlhagga, K. T. Mullen, “Contour detection with chromatic and luminance contrast,” Vision Res. (to be published).

Mollon, J. D.

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post receptoral adaptation,” Nature (London) 349, 235–238 (1991).
[Crossref]

Moreland, J. D.

J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Documenta Ophthalmologia ProceedingsSeries 33,G. Verriest, ed. (Junk, The Hague, 1982), pp. 61–66.

Mullen, K. T.

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanism identified by simultaneous masking,” Vision Res. 34, 331–341 (1994).
[Crossref] [PubMed]

K. T. Mullen, M. A. Losada, F. A. A. Kingdom, “Inherent stimulus non-linearities in the combination of color and luminance contrast,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 699 (1992).

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in colour vision,” Vision Res. 32, 483–488 (1992).
[Crossref] [PubMed]

K. T. Mullen, J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
[Crossref] [PubMed]

K. T. Mullen, “The contrast sensitivity of human colour vision to red/green and blue/yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

F. A. A. Kingdom, K. T. Mullen, “Separating colour and luminance in the brain,” Spatial Vision (to be published).

W. H. McIlhagga, K. T. Mullen, “Contour detection with chromatic and luminance contrast,” Vision Res. (to be published).

Nachmias, J.

J. Nachmias, “Contrast modulated maskers: test of a late non-linearity hypothesis,” Vision Res. 29, 137–142 (1989).
[Crossref]

J. Nachmias, R. V. Sansbury, “Granting contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[Crossref] [PubMed]

Noorlander, C.

Olzak, L. A.

L. A. Olzak, J. P. Thomas, “Normalizing and summing pools in complex frequency discriminations,” Invest. Ophthalmol. Vis. Sci. 34, 818 (1993).

Parish, D. H.

Pelli, D. G.

Picotte, C. J.

Pokorny, J.

A. E. Elsner, J. Pokorny, S. A. Burns, “Chromaticity discrimination: effects of luminance contrast and spatial frequency,” J. Opt. Soc. Am. A 3, 916–919 (1986).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Ross, J.

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London Ser. B 246, 61–70 (1991).
[Crossref]

Sansbury, R. V.

J. Nachmias, R. V. Sansbury, “Granting contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[Crossref] [PubMed]

Smith, V. C.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Speed, H. D.

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London Ser. B 246, 61–70 (1991).
[Crossref]

Sperling, H. G.

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[Crossref] [PubMed]

Stomeyer, C. F.

C. F. Stomeyer, G. R. Cole, R. E. Kroneuer, “Chromatic supression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).

C. F. Stomeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[Crossref]

C. F. Stomeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanism controlling sensitivity to red–green chromatic flashes,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

Stromeyer, C. F.

A. Chaparro, C. F. Stromeyer, R. E. Kroneauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[Crossref] [PubMed]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[Crossref] [PubMed]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[Crossref] [PubMed]

C. F. Stromeyer, S. Klein, “Spatial frequency channels in human vision as asymmetric (edge) mechanisms,” Vision Res. 14, 1409–1419 (1974).
[Crossref] [PubMed]

Switkes, E.

Thibos, L.

Thomas, J. P.

L. A. Olzak, J. P. Thomas, “Normalizing and summing pools in complex frequency discriminations,” Invest. Ophthalmol. Vis. Sci. 34, 818 (1993).

Tyler, C. W.

Vingrys, A. J.

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[Crossref]

Webster, M. A.

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post receptoral adaptation,” Nature (London) 349, 235–238 (1991).
[Crossref]

Williams, D. R.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–31 (1986).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
[Crossref]

Wurm, L. H.

Zhang, X.

Appl. Opt. (1)

Color Res. Appl. (1)

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[Crossref]

Invest. Ophthalmol. Vis. Sci (1)

J. M. Foley, Pattern masking phenomena require a new model of human pattern vision mechanisms,” Invest. Ophthalmol. Vis. Sci 34, 819 (1993).

Invest. Ophthalmol. Vis. Sci. (1)

L. A. Olzak, J. P. Thomas, “Normalizing and summing pools in complex frequency discriminations,” Invest. Ophthalmol. Vis. Sci. 34, 818 (1993).

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

K. T. Mullen, M. A. Losada, F. A. A. Kingdom, “Inherent stimulus non-linearities in the combination of color and luminance contrast,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 699 (1992).

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (10)

A. E. Elsner, J. Pokorny, S. A. Burns, “Chromaticity discrimination: effects of luminance contrast and spatial frequency,” J. Opt. Soc. Am. A 3, 916–919 (1986).
[Crossref] [PubMed]

G. E. Legge, D. H. Parish, A. Luebker, L. H. Wurm, “Psychophysics of reading. XI. Comparing color contrast and luminance contrast,” J. Opt. Soc. Am. A 7, 2002–2010 (1990).
[Crossref] [PubMed]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[Crossref] [PubMed]

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[Crossref] [PubMed]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[Crossref] [PubMed]

G. R. Cole, T. Hine, W. H. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
[Crossref] [PubMed]

K. T. Mullen, J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
[Crossref] [PubMed]

K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[Crossref] [PubMed]

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[Crossref] [PubMed]

D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508–1531 (1985).
[Crossref] [PubMed]

J. Physiol. (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red/green and blue/yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

Nature (London) (1)

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post receptoral adaptation,” Nature (London) 349, 235–238 (1991).
[Crossref]

Opt. Acta (1)

R. M. Boynton, M. M. Hayhoe, D. I. A. Macleod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
[Crossref]

Proc. R. Soc. London Ser. B (1)

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London Ser. B 246, 61–70 (1991).
[Crossref]

Science (1)

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[Crossref] [PubMed]

Vision Res. (15)

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in colour vision,” Vision Res. 32, 483–488 (1992).
[Crossref] [PubMed]

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanism identified by simultaneous masking,” Vision Res. 34, 331–341 (1994).
[Crossref] [PubMed]

J. Nachmias, “Contrast modulated maskers: test of a late non-linearity hypothesis,” Vision Res. 29, 137–142 (1989).
[Crossref]

J. Nachmias, R. V. Sansbury, “Granting contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[Crossref] [PubMed]

C. F. Stromeyer, S. Klein, “Spatial frequency channels in human vision as asymmetric (edge) mechanisms,” Vision Res. 14, 1409–1419 (1974).
[Crossref] [PubMed]

J. M. Foley, G. E. Legge, “Contrast detection and near threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
[Crossref]

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
[Crossref]

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–31 (1986).
[Crossref] [PubMed]

A. Chaparro, C. F. Stromeyer, R. E. Kroneauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[Crossref] [PubMed]

C. F. Stomeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[Crossref]

C. F. Stomeyer, G. R. Cole, R. E. Kroneuer, “Chromatic supression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).

R. T. Eskew “The gap effect revisited: slow changes in chromatic sensitivity as affected by luminance and chromatic borders,” Vision Res. 29, 717–729 (1989).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Other (4)

W. H. McIlhagga, K. T. Mullen, “Contour detection with chromatic and luminance contrast,” Vision Res. (to be published).

C. F. Stomeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanism controlling sensitivity to red–green chromatic flashes,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Documenta Ophthalmologia ProceedingsSeries 33,G. Verriest, ed. (Junk, The Hague, 1982), pp. 61–66.

F. A. A. Kingdom, K. T. Mullen, “Separating colour and luminance in the brain,” Spatial Vision (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Three schemes for how the color and luminance psychophysical detection mechanisms may be organized within the visual cortex: (a) double-duty model representing single common pathway for color and luminance responses, (b) distinct pathways for color and luminance mechanisms but with some crossing of the color contrast and luminance contrast inputs, (c) distinct pathways for color and luminance mechanisms with independent transduction, with modulatory interactions occurring posttransduction. L, luminance; C, color. See text for further details.

Fig. 2
Fig. 2

Diagram of stimuli in relation to detection mechanisms in an L- and M-cone contrast space. Vectors Slum and Srg, homochromatic luminance and isoluminant red–green stimuli, respectively; vectors Mlum and Mrg, directions of luminance and L–M chromatic mechanisms, respectively; β, angle of the luminance mechanism, orthogonal to the isoluminant stimulus, which is determined for each subject. The luminance stimulus lies at 45 deg, the L–M chromatic mechanism at 135 deg (see text).

Fig. 3
Fig. 3

(a) Detection of luminance contrast in the presence of variable color contrast. Axes are scaled in multiples of detection threshold. Stimuli are sinusoidal gratings of 1 cycle/deg; test and mask gratings are combined in a fixed relative phase of 180 deg. Solid curves, polynomial fit to the pooled data; error bars, two times the standard error of the mean. The unmasked luminance test thresholds in units of Michelson screen contrast for subjects MAL, KTM, MJS, and FAK are 0.0074, 0.0065, 0.0064, and 0.0080, respectively. (b) Detection of color contrast in the presence of variable luminance contrast. See (a) for legend. The unmasked color test thresholds in units of Michelson screen contrast for subjects MAL, KTM, MJS, and FAK are 0.0066, 0.0082, 0.0075, and 0.0092, respectively. In this and all subsequent figures: Lum, luminance; Col, color; thresh, threshold.

Fig. 4
Fig. 4

Crossed TvC functions for three spatial frequencies for three subjects: (a) detection of luminance in the presence of color contrast, (b) detection of color in the presence of luminance contrast. cpd, Cycles/deg. Other conditions as for Fig. 3.

Fig. 5
Fig. 5

Crossed TvC functions for three phases of test and mask combination for subjects MAL and KTM: (a) detection of luminance in the presence of color contrast, (b) detection of color in the presence of luminance contrast. Spatial frequencies as marked; cpd, cycles/deg. Other conditions as for Fig. 3.

Fig. 6
Fig. 6

Detection of luminance in the presence of color contrast when the relative phases of test and mask stimuli are randomly presented at 0 or 180 deg for three subjects. Conditions are as in Fig. 3. Test spatial frequencies are 1, 0.5, and 1 cycle/deg for subjects MAL, KTM, and MJS, respectively.

Fig. 7
Fig. 7

Detection of color in the presence of luminance contrast when the relative phases of test and mask stimuli are randomly presented at 0 or 180 deg. Details as for Fig. 6.

Fig. 8
Fig. 8

Change in threshold (expressed as multiples of unmasked threshold) for the detection of a luminance test in the presence of color contrast as a function of the relative spatial frequencies, Sf, of the test and mask (in octaves) for subjects MAL and KTM. Data are derived from measurements of complete TvC functions (not shown). Masking was obtained with a fixed mask contrast (0.50). Facilitation is represented by the lowest threshold of the complete TvC function. Open symbols, fixed phase of test and mask (180 deg); filled symbols, random presentation of 16 test and mask phases; error bars, two times the standard error of the mean. Spatial frequency, 0.50 and 1 cycle/deg for MAL and KTM, respectively. Note that facilitation is lost when test and mask are presented randomly and when they differ in spatial frequency.

Fig. 9
Fig. 9

Change in threshold for detection of a color test in the presence of luminance contrast as a function of the relative spatial frequency, Sf, of test and mask stimuli. Details as for Fig. 8. Note that the facilitation remains for the random presentation of test and mask even when test and mask spatial frequencies differ.

Fig. 10
Fig. 10

Calculation of equivalent contrasts of color and luminance masks for detection of a luminance test grating for subject MAL: (a) uncrossed luminance TvC function, plotted in the standard way; (b) crossed TvC function measured with the test and mask phase randomized over 16 different phases. The arrows indicate the luminance and color mask contrasts that produce an equivalent luminance test threshold elevation. Test and mask spatial frequency is 1 cycle/deg. Data points are not shown.

Fig. 11
Fig. 11

Luminance test thresholds as a function of luminance mask contrast in the presence of a fixed pedestal of color contrast for three subjects. Axes are scaled in units of unmasked luminance test threshold. The fixed color contrast pedestal is selected to produce a small threshold elevation of the unmasked luminance test stimulus, as indicated by the arrow in Fig. 10(b) and corresponding to the leftmost symbol in each panel of this figure. The Michelson contrast of the color pedestal is 0.06 for each subject. The relative phase of the luminance test and the luminance mask is 0 deg. The phase of the fixed color pedestal in relation to the luminance test and mask varies randomly over 16 phases. Solid curves, prediction for an additive model for the combined influence of color and luminance contrast on the test threshold (see text); dashed curves, prediction for the separability model, which assumes that the color and luminance transduction processes are independent (see text).

Fig. 12
Fig. 12

Calculation of equivalent contrasts of color and luminance masks for detection of the isoluminant chromatic test grating for subject KTM. (a) Uncrossed color TvC function, plotted in the standard way; (b) crossed TvC function, measured with the test-and-mask phase randomized over 16 phases. The arrows indicate the luminance and color mask contrasts that produce an equivalent color test threshold elevation. Data points are not shown.

Fig. 13
Fig. 13

Color test thresholds measured as a function of color mask contrast in the presence of a fixed pedestal of luminance contrast for three subjects. Axes are scaled in units of unmasked color test threshold. The fixed contrast of the luminance pedestal, given in each panel, is selected to produce a small threshold elevation of the unmasked luminance test stimulus, as indicated by the arrow in Fig. 12(b) and corresponding to the leftmost symbol in each panel of this figure. Remaining details as for Fig. 11.

Fig. 14
Fig. 14

Luminance test thresholds as a function of color contrast for three subjects. Filled symbols, thresholds for the detection of a local color cue based on a comparison of the stimuli in the two presentation intervals (see text). Curves without symbols, random presentation of test and mask (0 or 180 deg), taken from Fig. 6. The use of the local color cue produces a suprathreshold facilitation of the luminance test threshold.

Fig. 15
Fig. 15

Color test thresholds plotted as a function of luminance contrast for three subjects. Solid symbols, thresholds for the detection of a local color cue based on a comparison of the stimuli in the two presentation intervals (see text). Curves without symbols, random presentation of test and mask (0 or 180 deg), taken from Fig. 7. The use of the local color cue, except in the cases of subjects MAL and KTM, does not increase the suprathreshold facilitation of the color test threshold.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

L = M r + M g + M r ( C + Δ C ) sin ω x ± M g ( C - Δ C ) sin ω x ,
M · S = S M cos ( τ ) = a x + b y + c z ,
M rg · S rg = 0.71 ( l rg + m rg ) .
M lum · S lum = l lum L lum + m lum M lum
M lum · S lum = l lum ( L lum + M lum ) .
M lum · S rg = M rg · S lum = 0.
M rg = ( - x , y ) ,
M rg · S lum = l lum ( - x + y ) .
M rg · S rg = l rg x + m rg y .
l lum ( - x , y ) = l rg x + m rg y .
l lum = l rg tan ( α ) + m rg tan ( α ) - 1 .
M by · S lum = 0.84 l lum , M by · S rg = 0.73 l rg - 0.11 m rg .

Metrics