Abstract

We compare two methods for measuring the modulation transfer function (MTF) of the human eye: an interferometric method similar to that of Campbell and Green [ J. Physiol. (London) 181, 576 ( 1965)] and a double-pass procedure similar to that of Santamaria et al. [ J. Opt. Soc. Am. A 4, 1109 ( 1987)]. We implemented various improvements in both techniques to reduce error in the estimates of the MTF. We used the same observers, refractive state, pupil size (3 mm), and wavelength (632.8 nm) for both methods. In the double-pass method we found close agreement between the plane of subjective best focus for the observer and the plane of objective best focus, suggesting that much of the reflected light is confined within individual cones throughout its double pass through the receptor layer. The double-pass method produced MTF’s that were similar to but slightly lower than those of the interferometric method. This additional loss in modulation transfer is probably attributable to light reflected from the choroid, because green light, which reduces the contribution of the choroid to the fundus reflection, produces somewhat higher MTF’s that are consistent with the interferometric results. When either method is used, the MTF’s lie well below those obtained with the aberroscope method [ Vision Res. 28, 659 ( 1988)]. On the basis of the interferometric method, we propose a new estimate of the monochromatic MTF of the eye.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Santamaria, P. Artal, J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [CrossRef]
  2. F. Flamant, “Etude de la repartition de lumiére dans l’image rétinienne d’une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).
  3. J. Krauskopf, “Light distribution in human retinal images,” J. Opt. Soc. Am. 52, 1046–1050 (1962).
    [CrossRef]
  4. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).
  5. R. Rohler, U. Miller, M. Aberl, “Zur Messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im Reflektierten Licht,” Vision Res. 9, 407–428 (1969).
    [CrossRef]
  6. R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
    [CrossRef] [PubMed]
  7. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).
  8. A. Arnulf, O. Dupuy, “La transmission des contrastes par le système optique de l’oeil et les seuils des contrastes rétiniens,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).
  9. S. Berger-Lheureux-Robardey, “Mesure de la fonction de transfert de modulation du système optique de l’oeil et des seuils de modulation rétiniens,” Rev. Opt. Theor. Instrum. 44, 294–323 (1965).
  10. N. Sekiguchi, D. R. Williams, D. H. Brainard, “Aberration-free measurements of the visibility of isoluminant gratings,” J. Opt. Soc. Am. A 10, 2105–2117 (1993).
    [CrossRef]
  11. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
    [CrossRef] [PubMed]
  12. A. B. Watson, D. G. Pelli, “quest: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
    [CrossRef] [PubMed]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  14. D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1142 (1980).
    [CrossRef] [PubMed]
  15. M. Marchywka, D. G. Socker, “Modulation transfer function measurement technique for small-pixel detectors,” Appl. Opt. 31, 7198–7213 (1992).
    [CrossRef] [PubMed]
  16. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A (to be published).
  17. G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
    [CrossRef] [PubMed]
  18. G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
    [CrossRef] [PubMed]
  19. G. Westheimer, “Dependence of the magnitude of the Stiles–Crawford effect on retinal location,” J. Physiol. 192, 309–315 (1967).
    [PubMed]
  20. J. J. Vos, J. Walraven, A. Van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
    [CrossRef] [PubMed]
  21. G. Westheimer, “The eye as an optical instrument,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 4/1–4/20.
  22. D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
    [CrossRef] [PubMed]
  23. G. Walsh, W. N. Charman, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
    [CrossRef] [PubMed]
  24. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef] [PubMed]
  25. G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthal. Physiol. Opt. 5, 23–31 (1985).
    [CrossRef]
  26. F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, Newcastle, UK, 1969), pp. 375–386.
  27. H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations of best focus for small artificial pupils,” Vision Res. 29, 979–983 (1989).
    [CrossRef] [PubMed]
  28. H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972).
    [CrossRef]
  29. P. Artal, R. Navarro, “Simultaneous measurement of two point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992).
    [CrossRef] [PubMed]
  30. J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of wave aberrations of the human eye with use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  31. A. Arnulf, J. Santamaria, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981).
    [CrossRef]
  32. B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
    [CrossRef] [PubMed]
  33. C. Yuodelis, A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847–876 (1986).
    [CrossRef] [PubMed]
  34. S. Polyak, The Vertebrate Visual System (U. Chicago Press, Chicago, Ill., 1957).
  35. H. Goldmann, “Stiles–Crawford effekt,” Ophthalmologica 103, 225–229 (1942).
    [CrossRef]
  36. J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” in Performance of the Eye at Low Luminances, M. A. Bouman, J. J. Vos, eds. Excerpta Medica International Congress Series, No. 125 (Excerpta Medica Foundation, Amsterdam, 1966).
  37. J.-M. Gorrand, F. C. Delori, “Reflectometric technique for assessing photoreceptor alignment,” Vision Res. (to be published).
  38. M. Glickstein, M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970).
    [CrossRef] [PubMed]
  39. W. N. Charman, “Some sources of discrepancy between static retinoscopy and subjective refraction,” Brit. J. Physiol. Opt. 30, 108–118 (1975).
  40. J. F. Simon, P. M. Denieul, “Influence of the size of test field employed in measurements of modulation transfer function of the eye,” J. Opt. Soc. Am. 63, 894–896 (1973).
    [CrossRef] [PubMed]
  41. R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. 186, 175–186 (1966).
    [PubMed]
  42. G. J. van Blokland, “Ellipsometry of the human retina in vivo: preservation of polarization,” J. Opt. Soc. Am. A 2, 72–75 (1985).
    [CrossRef] [PubMed]
  43. L. J. Bour, “Polarized light and the eye,” in Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, New York, 1991), Vol. 1, pp. 310–325.
  44. G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1044 (1962).
    [CrossRef] [PubMed]
  45. W. N. Charman, J. A. M. Jennings, “The optical quality of the retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).

1994

1993

1992

1989

H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations of best focus for small artificial pupils,” Vision Res. 29, 979–983 (1989).
[CrossRef] [PubMed]

1988

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

1987

1986

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef] [PubMed]

C. Yuodelis, A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847–876 (1986).
[CrossRef] [PubMed]

1985

1984

1983

A. B. Watson, D. G. Pelli, “quest: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

1981

A. Arnulf, J. Santamaria, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981).
[CrossRef]

1980

D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1142 (1980).
[CrossRef] [PubMed]

1977

1976

J. J. Vos, J. Walraven, A. Van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
[CrossRef] [PubMed]

W. N. Charman, J. A. M. Jennings, “The optical quality of the retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).

1975

W. N. Charman, “Some sources of discrepancy between static retinoscopy and subjective refraction,” Brit. J. Physiol. Opt. 30, 108–118 (1975).

1973

1972

H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972).
[CrossRef]

1970

M. Glickstein, M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970).
[CrossRef] [PubMed]

1969

R. Rohler, U. Miller, M. Aberl, “Zur Messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im Reflektierten Licht,” Vision Res. 9, 407–428 (1969).
[CrossRef]

1967

G. Westheimer, “Dependence of the magnitude of the Stiles–Crawford effect on retinal location,” J. Physiol. 192, 309–315 (1967).
[PubMed]

1966

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. 186, 175–186 (1966).
[PubMed]

1965

S. Berger-Lheureux-Robardey, “Mesure de la fonction de transfert de modulation du système optique de l’oeil et des seuils de modulation rétiniens,” Rev. Opt. Theor. Instrum. 44, 294–323 (1965).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

1962

1960

A. Arnulf, O. Dupuy, “La transmission des contrastes par le système optique de l’oeil et les seuils des contrastes rétiniens,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).

1955

F. Flamant, “Etude de la repartition de lumiére dans l’image rétinienne d’une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

1942

H. Goldmann, “Stiles–Crawford effekt,” Ophthalmologica 103, 225–229 (1942).
[CrossRef]

Aberl, M.

R. Rohler, U. Miller, M. Aberl, “Zur Messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im Reflektierten Licht,” Vision Res. 9, 407–428 (1969).
[CrossRef]

Arnulf, A.

A. Arnulf, J. Santamaria, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981).
[CrossRef]

A. Arnulf, O. Dupuy, “La transmission des contrastes par le système optique de l’oeil et les seuils des contrastes rétiniens,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).

Artal, P.

Berger-Lheureux-Robardey, S.

S. Berger-Lheureux-Robardey, “Mesure de la fonction de transfert de modulation du système optique de l’oeil et des seuils de modulation rétiniens,” Rev. Opt. Theor. Instrum. 44, 294–323 (1965).

Berny, F.

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, Newcastle, UK, 1969), pp. 375–386.

Bescós, J.

J. Santamaria, P. Artal, J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[CrossRef]

A. Arnulf, J. Santamaria, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981).
[CrossRef]

Bille, J.

Bour, L. J.

L. J. Bour, “Polarized light and the eye,” in Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, New York, 1991), Vol. 1, pp. 310–325.

Brainard, D. H.

Buettner, J.

H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations of best focus for small artificial pupils,” Vision Res. 29, 979–983 (1989).
[CrossRef] [PubMed]

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1044 (1962).
[CrossRef] [PubMed]

Charman, W. N.

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthal. Physiol. Opt. 5, 23–31 (1985).
[CrossRef]

G. Walsh, W. N. Charman, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

W. N. Charman, J. A. M. Jennings, “The optical quality of the retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).

W. N. Charman, “Some sources of discrepancy between static retinoscopy and subjective refraction,” Brit. J. Physiol. Opt. 30, 108–118 (1975).

Chen, B.

B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
[CrossRef] [PubMed]

Delori, F. C.

J.-M. Gorrand, F. C. Delori, “Reflectometric technique for assessing photoreceptor alignment,” Vision Res. (to be published).

Denieul, P. M.

Dupuy, O.

A. Arnulf, O. Dupuy, “La transmission des contrastes par le système optique de l’oeil et les seuils des contrastes rétiniens,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).

Enoch, J. M.

H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972).
[CrossRef]

Flamant, F.

F. Flamant, “Etude de la repartition de lumiére dans l’image rétinienne d’une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

Glickstein, M.

M. Glickstein, M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970).
[CrossRef] [PubMed]

Goelz, S.

Goldmann, H.

H. Goldmann, “Stiles–Crawford effekt,” Ophthalmologica 103, 225–229 (1942).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

Gorrand, J.-M.

J.-M. Gorrand, F. C. Delori, “Reflectometric technique for assessing photoreceptor alignment,” Vision Res. (to be published).

Green, D. G.

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Grimm, B.

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

Hendrickson, A.

C. Yuodelis, A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847–876 (1986).
[CrossRef] [PubMed]

Howland, B.

Howland, H. C.

H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations of best focus for small artificial pupils,” Vision Res. 29, 979–983 (1989).
[CrossRef] [PubMed]

H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
[CrossRef] [PubMed]

Jennings, J. A. M.

W. N. Charman, J. A. M. Jennings, “The optical quality of the retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).

Krauskopf, J.

J. Krauskopf, “Light distribution in human retinal images,” J. Opt. Soc. Am. 52, 1046–1050 (1962).
[CrossRef]

J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” in Performance of the Eye at Low Luminances, M. A. Bouman, J. J. Vos, eds. Excerpta Medica International Congress Series, No. 125 (Excerpta Medica Foundation, Amsterdam, 1966).

Liang, J.

MacLeod, D. I. A.

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

Makous, W.

B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
[CrossRef] [PubMed]

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

Marchywka, M.

Marcos, S.

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A (to be published).

Miller, U.

R. Rohler, U. Miller, M. Aberl, “Zur Messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im Reflektierten Licht,” Vision Res. 9, 407–428 (1969).
[CrossRef]

Millodot, M.

M. Glickstein, M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970).
[CrossRef] [PubMed]

Navarro, R.

Ohzu, H.

H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972).
[CrossRef]

Pelli, D. G.

A. B. Watson, D. G. Pelli, “quest: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Polyak, S.

S. Polyak, The Vertebrate Visual System (U. Chicago Press, Chicago, Ill., 1957).

Rohler, R.

R. Rohler, U. Miller, M. Aberl, “Zur Messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im Reflektierten Licht,” Vision Res. 9, 407–428 (1969).
[CrossRef]

Santamaria, J.

J. Santamaria, P. Artal, J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[CrossRef]

A. Arnulf, J. Santamaria, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981).
[CrossRef]

Sekiguchi, N.

Simon, J. F.

Slansky, S.

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, Newcastle, UK, 1969), pp. 375–386.

Sliney, D. H.

D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1142 (1980).
[CrossRef] [PubMed]

Socker, D. G.

van Blokland, G. J.

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef] [PubMed]

G. J. van Blokland, “Ellipsometry of the human retina in vivo: preservation of polarization,” J. Opt. Soc. Am. A 2, 72–75 (1985).
[CrossRef] [PubMed]

Van Meeteren, A.

J. J. Vos, J. Walraven, A. Van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
[CrossRef] [PubMed]

Vos, J. J.

J. J. Vos, J. Walraven, A. Van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
[CrossRef] [PubMed]

Walraven, J.

J. J. Vos, J. Walraven, A. Van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
[CrossRef] [PubMed]

Walsh, G.

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthal. Physiol. Opt. 5, 23–31 (1985).
[CrossRef]

G. Walsh, W. N. Charman, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, D. G. Pelli, “quest: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Weale, R. A.

R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. 186, 175–186 (1966).
[PubMed]

Westheimer, G.

G. Westheimer, “Dependence of the magnitude of the Stiles–Crawford effect on retinal location,” J. Physiol. 192, 309–315 (1967).
[PubMed]

G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1044 (1962).
[CrossRef] [PubMed]

G. Westheimer, “The eye as an optical instrument,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 4/1–4/20.

Williams, D. R.

B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
[CrossRef] [PubMed]

N. Sekiguchi, D. R. Williams, D. H. Brainard, “Aberration-free measurements of the visibility of isoluminant gratings,” J. Opt. Soc. Am. A 10, 2105–2117 (1993).
[CrossRef]

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
[CrossRef] [PubMed]

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A (to be published).

Wolbarsht, M. L.

D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1142 (1980).
[CrossRef] [PubMed]

Yuodelis, C.

C. Yuodelis, A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847–876 (1986).
[CrossRef] [PubMed]

Appl. Opt.

Br. J. Physiol. Opt.

W. N. Charman, J. A. M. Jennings, “The optical quality of the retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).

Brit. J. Physiol. Opt.

W. N. Charman, “Some sources of discrepancy between static retinoscopy and subjective refraction,” Brit. J. Physiol. Opt. 30, 108–118 (1975).

C. R. Acad. Sci. (Paris)

A. Arnulf, O. Dupuy, “La transmission des contrastes par le système optique de l’oeil et les seuils des contrastes rétiniens,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).

J. Opt. (Paris)

A. Arnulf, J. Santamaria, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol.

R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. 186, 175–186 (1966).
[PubMed]

G. Westheimer, “Dependence of the magnitude of the Stiles–Crawford effect on retinal location,” J. Physiol. 192, 309–315 (1967).
[PubMed]

J. Physiol. (London)

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Ophthal. Physiol. Opt.

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthal. Physiol. Opt. 5, 23–31 (1985).
[CrossRef]

Ophthalmologica

H. Goldmann, “Stiles–Crawford effekt,” Ophthalmologica 103, 225–229 (1942).
[CrossRef]

Percept. Psychophys.

A. B. Watson, D. G. Pelli, “quest: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Rev. Opt. Theor. Instrum.

F. Flamant, “Etude de la repartition de lumiére dans l’image rétinienne d’une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

S. Berger-Lheureux-Robardey, “Mesure de la fonction de transfert de modulation du système optique de l’oeil et des seuils de modulation rétiniens,” Rev. Opt. Theor. Instrum. 44, 294–323 (1965).

Science

M. Glickstein, M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970).
[CrossRef] [PubMed]

Vision Res.

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef] [PubMed]

R. Rohler, U. Miller, M. Aberl, “Zur Messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im Reflektierten Licht,” Vision Res. 9, 407–428 (1969).
[CrossRef]

J. J. Vos, J. Walraven, A. Van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
[CrossRef] [PubMed]

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1142 (1980).
[CrossRef] [PubMed]

H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations of best focus for small artificial pupils,” Vision Res. 29, 979–983 (1989).
[CrossRef] [PubMed]

H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972).
[CrossRef]

B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
[CrossRef] [PubMed]

C. Yuodelis, A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847–876 (1986).
[CrossRef] [PubMed]

Other

S. Polyak, The Vertebrate Visual System (U. Chicago Press, Chicago, Ill., 1957).

J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” in Performance of the Eye at Low Luminances, M. A. Bouman, J. J. Vos, eds. Excerpta Medica International Congress Series, No. 125 (Excerpta Medica Foundation, Amsterdam, 1966).

J.-M. Gorrand, F. C. Delori, “Reflectometric technique for assessing photoreceptor alignment,” Vision Res. (to be published).

L. J. Bour, “Polarized light and the eye,” in Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, New York, 1991), Vol. 1, pp. 310–325.

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, Newcastle, UK, 1969), pp. 375–386.

G. Westheimer, “The eye as an optical instrument,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 4/1–4/20.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of interferometric apparatus. An intensity profile of the stimulus display is shown in the inset at the bottom. The dual interferometer produces two collimated fields, each containing an interference fringe generated from a separate laser source. Fringe A is an interference fringe cast on the retina; fringe B is cast on a rotating diffuser, D, which results in an incoherent grating cast on the retina. S, tungsten source; IF, 630-nm interference filter; AP, 3-mm artificial pupil, which is conjugate with the natural pupil; W, neutral-density wedge; F’s, field stops, which are conjugate with the retina; BS, beam splitters.

Fig. 2
Fig. 2

Interferometric MTF’s for three observers, with 3-mm pupil and 632.8-nm wavelength. Solid curve, least-squares fit of the product of an exponential and the diffraction-limited MTF; dashed curve, interferometric MTF of Campbell and Green,7 obtained with a 2.8-mm pupil.

Fig. 3
Fig. 3

Diagram of the double-pass apparatus. S, He–Ne laser source; AOM, acousto-optic modulator; ND, neutral-density filters; SF, spatial filter; G, focusing grating; AP, 3-mm artificial pupil; P, pellicle; T, light trap; CCD, array detector for capturing the aerial image; L’s, lenses.

Fig. 4
Fig. 4

Double-pass MTF’s for three observers, with 632.8-nm wavelength, 3-mm pupil, and 0.8-deg camera field of view. Heavy solid curve, diffraction-limited MTF for a 3-mm pupil at 632.8 nm; thin solid curve, double-pass MTF of Campbell and Gubisch4 obtained with a 3-mm pupil in white light.

Fig. 5
Fig. 5

Comparison of interferometric and double-pass MTF’s averaged for the same three observers, refractive state, wavelength, and pupil size. Also shown is the aberroscope MTF, averaged for two observers, of Walsh and Charman.17 Error bars show plus and minus one standard error of the mean based on variability among observers.

Fig. 6
Fig. 6

Comparison of double-pass and interferometric PSF’s with the diffraction-limited PSF (Airy disk) and with the PSF’s proposed by Vos et al.20 and Westheimer.21

Fig. 7
Fig. 7

Comparison of subjective and objective focal planes obtained with the double-pass method. The subjective focal plane is assumed to lie at the external limiting membrane, elm. Dashed lines show the 95% confidence interval bracketing the mean objective plane, shown as heavy horizontal lines; ilm, inner limiting membrane.

Fig. 8
Fig. 8

Double-pass MTF’s obtained with observer DRW in 632.8-nm light, showing that reducing the CCD camera field of view spuriously increases the MTF. The linear polarizer that was placed in the output path was oriented parallel to the polarization axis of the input beam. Shown for comparison is the interferometric MTF for observer DRW.

Fig. 9
Fig. 9

Comparison of double-pass MTF’s obtained at 632.8- and 543-nm wavelengths for observer DRW. Also shown is the effect of CCD field size for the 543-nm case; this effect is smaller than the effect at 632.8 nm shown in Fig. 8.

Fig. 10
Fig. 10

Comparison of the double-pass MTF obtained with 543-nm light and the interferometric MTF at 632.8 nm for observer DRW. The dashed curve shows the approximate double-pass MTF that would have been expected if the blurring by diffraction had been at 632.8 instead of 543 nm.

Tables (3)

Tables Icon

Table 1 Tabulated Values of the Interferometric MTF Averaged across Three Observers and Standard Deviation Based on the Variability among Thema

Tables Icon

Table 2 Tabulated Values of the PSF and LSF Estimated from the Mean Interferometric MTFa

Tables Icon

Table 3 Mean Objective Minus Mean Subjective Focus in Diopters for Various Observers at Various Retinal Locations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M ( s , s 0 ) = D ( s , s 0 ) [ w 1 + w 2 exp ( - a s ) ] ,
D ( s , s 0 ) = 2 π [ cos - 1 ( s s 0 ) - ( s s 0 ) 1 - ( s s 0 ) 2 ]             for s < s 0 .

Metrics