Abstract

A modal theory is presented for solving the problem of electromagnetic scattering from a surface consisting of a finite number of one-dimensional rectangular grooves in a metallic plane. The incident plane wave can be polarized with either its electric or its magnetic field along the grooves. The formalism is applicable to perfectly conducting materials and to real metals with high (but finite) conductivity. Particular attention is paid to the changes appearing in the scattering pattern when the conductivity of the structure is changed from an infinite value (perfect conductor) to a finite value (highly conducting metal). The excitation of surface waves when the incident wave is p polarized is illustrated in some numerical examples that demonstrate the differences between the spectral amplitudes corresponding to s and p polarizations.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scattering of TE-polarized waves by a finite grating: giant resonant enhancement of the electric field within the grooves

O. Mata-Mendez and J. Sumaya-Martinez
J. Opt. Soc. Am. A 14(9) 2203-2211 (1997)

Analysis of TM scattering from finite rectangular grooves in a conducting plane

Tah J. Park, Hyo J. Eom, and Kuniaki Yoshitomi
J. Opt. Soc. Am. A 10(5) 905-911 (1993)

Scattering from groove patterns in a perfectly conducting surface

Guy A. Schiavone, K. O’Neill, and K. D. Paulsen
J. Opt. Soc. Am. A 14(9) 2212-2222 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription