Abstract

We report results that were obtained with two generations (Generation I and Generation II) of a laser-guide-star adaptive-optics system that is capable of continuous compensation at 65-Hz (Generation I) and 130-Hz (Generation II) closed-loop bandwidths on a 1.5-m telescope. We used a copper-vapor laser that was focused at a 10-km range as the laser guide star and a range-gated Shack–Hartmann sensor to operate a continuous-facesheet deformable mirror that controlled either 149 or 241 actuators. We used a separate full-aperture sensor and a steering mirror to remove overall tilt. System performance was measured by imaging stars with a high-resolution CCD camera in a narrow spectral band that was centered at 0.88 μm, from which we computed point-spread functions, optical transfer functions, and Strehl ratios. Using the laser guide star, we achieved a FWHM image resolution of 0.13 arcsec and a Strehl ratio of 0.48. Using a natural guide star, we achieved a Strehl ratio of 0.64 at 0.13 arcsec FWHM resolution. We also obtained compensated images of the Trapezium region in Orion in H-α light, using only the laser guide star.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).
  2. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991).
    [CrossRef]
  3. C. A. Primmerman, “Adaptive optics experiments using synthetic beacons,” Bull. Am. Astron. Soc. 23, 898 (1991).
  4. C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
    [CrossRef]
  5. R. J. Sasiela, J. G. Mooney, “An optical phase reconstructor based on using a multiplier-accumulator approach,” in Adaptive Optics, J. E. Ludman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.551, 170–176 (1985).
    [CrossRef]
  6. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,”J. Opt. Soc. Am. 67, 370–375 (1977).
    [CrossRef]
  7. D. L. Walters, D. L. Favier, J. R. Hines, “Vertical path atmospheric MTF measurements,”J. Opt. Soc. Am. 69, 828–837 (1979).
    [CrossRef]
  8. K. B. Stevens, “Remote measurement of the atmospheric isoplanatic angle and determination of refractive turbulence profiles by direct inversion of the scintillation amplitude covariance function with Tikhonov regularization,” Ph.D. dissertation NPS-61-86-008 (Naval Postgraduate School, Monterey, Calif., 1985).
  9. B. L. Ellerbroek, “Demonstration of improved resolution by deconvolution of laser guide star compensated images,” in Laser Guide Star Adaptive Optics Workshop Proceedings, R. Q. Fugate, ed. (Phillips Laboratory, Albuquerque, N.M., 1992), pp. 227–237.
  10. M. A. Ealey, J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990).
    [CrossRef]
  11. G. A. Tyler, “Turbulence-induced adaptive-optics performance degradation: evaluation in the time domain,” J. Opt. Soc. Am. A 1, 251–262 (1984).
    [CrossRef]
  12. These observations were suggested by Peter McCollough, University of California, Berkeley, Calif. (personal communication, September1991).
  13. P. Laques, J. L. Vidal, “Detection of a new type of condensation in the center of the Orion Nebula by means of S20 photocathode cells associated with a Lallemand electronic camera,” Astron. Astrophys. 73, 97–106 (1973).
  14. P. R. McCullough, R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, J. F. Moroney, R. A. Cleis, “PIG’s in the Trapezium,” in Massive Stars: Their Lives in the Interstellar Medium, J. Cassinelli, E. Churchwell, eds., Vol. 35 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992).
  15. D. L. Fried, J. F. Belsher, “Analysis of fundamental limits to artificial-guide-star adaptive-optics-system performance for astronomical imaging,” J. Opt. Soc. Am. A 11, 277–287 (1994).
    [CrossRef]
  16. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,”J. Opt. Soc. Am. 67, 390–392 (1977).
    [CrossRef]
  17. R. Hudgin, “Wave-front compensation error due to finite corrector-element size,”J. Opt. Soc. Am. 67, 393–395 (1977).
    [CrossRef]
  18. B. L. Ellerbroek, “Comparison of least-squares and minimal variance reconstructors for turbulence compensation in the presence of noise: analysis and results,” (Optical Sciences Company, Placentia, Calif., 1986).

1994 (1)

1991 (4)

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991).
[CrossRef]

C. A. Primmerman, “Adaptive optics experiments using synthetic beacons,” Bull. Am. Astron. Soc. 23, 898 (1991).

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[CrossRef]

1990 (1)

M. A. Ealey, J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990).
[CrossRef]

1984 (1)

1979 (1)

1977 (3)

1973 (1)

P. Laques, J. L. Vidal, “Detection of a new type of condensation in the center of the Orion Nebula by means of S20 photocathode cells associated with a Lallemand electronic camera,” Astron. Astrophys. 73, 97–106 (1973).

Ameer, G. A.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991).
[CrossRef]

Anderson, J. M.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Barclay, H. T.

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[CrossRef]

Belsher, J. F.

Boeke, B. R.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991).
[CrossRef]

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Browne, S. L.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991).
[CrossRef]

Cleis, R. A.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

P. R. McCullough, R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, J. F. Moroney, R. A. Cleis, “PIG’s in the Trapezium,” in Massive Stars: Their Lives in the Interstellar Medium, J. Cassinelli, E. Churchwell, eds., Vol. 35 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992).

Cusumano, S. J.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Donovan, M. T.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Ealey, M. A.

M. A. Ealey, J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990).
[CrossRef]

Ellerbroek, B. L.

P. R. McCullough, R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, J. F. Moroney, R. A. Cleis, “PIG’s in the Trapezium,” in Massive Stars: Their Lives in the Interstellar Medium, J. Cassinelli, E. Churchwell, eds., Vol. 35 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992).

B. L. Ellerbroek, “Comparison of least-squares and minimal variance reconstructors for turbulence compensation in the presence of noise: analysis and results,” (Optical Sciences Company, Placentia, Calif., 1986).

B. L. Ellerbroek, “Demonstration of improved resolution by deconvolution of laser guide star compensated images,” in Laser Guide Star Adaptive Optics Workshop Proceedings, R. Q. Fugate, ed. (Phillips Laboratory, Albuquerque, N.M., 1992), pp. 227–237.

Favier, D. L.

Fried, D. L.

Fugate, R. Q.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991).
[CrossRef]

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

P. R. McCullough, R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, J. F. Moroney, R. A. Cleis, “PIG’s in the Trapezium,” in Massive Stars: Their Lives in the Interstellar Medium, J. Cassinelli, E. Churchwell, eds., Vol. 35 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992).

Greenwood, D. P.

Higgins, C. H.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

P. R. McCullough, R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, J. F. Moroney, R. A. Cleis, “PIG’s in the Trapezium,” in Massive Stars: Their Lives in the Interstellar Medium, J. Cassinelli, E. Churchwell, eds., Vol. 35 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992).

Hines, J. R.

Hudgin, R.

Jelonek, M. P.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Lange, W. J.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Laques, P.

P. Laques, J. L. Vidal, “Detection of a new type of condensation in the center of the Orion Nebula by means of S20 photocathode cells associated with a Lallemand electronic camera,” Astron. Astrophys. 73, 97–106 (1973).

McCollough, Peter

These observations were suggested by Peter McCollough, University of California, Berkeley, Calif. (personal communication, September1991).

McCullough, P. R.

P. R. McCullough, R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, J. F. Moroney, R. A. Cleis, “PIG’s in the Trapezium,” in Massive Stars: Their Lives in the Interstellar Medium, J. Cassinelli, E. Churchwell, eds., Vol. 35 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992).

Mooney, J. G.

R. J. Sasiela, J. G. Mooney, “An optical phase reconstructor based on using a multiplier-accumulator approach,” in Adaptive Optics, J. E. Ludman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.551, 170–176 (1985).
[CrossRef]

Moroney, J. F.

P. R. McCullough, R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, J. F. Moroney, R. A. Cleis, “PIG’s in the Trapezium,” in Massive Stars: Their Lives in the Interstellar Medium, J. Cassinelli, E. Churchwell, eds., Vol. 35 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992).

Moroney, J. R.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Murphy, D. V.

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[CrossRef]

Nickerson, K. S.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Page, D. A.

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[CrossRef]

Primmerman, C. A.

C. A. Primmerman, “Adaptive optics experiments using synthetic beacons,” Bull. Am. Astron. Soc. 23, 898 (1991).

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[CrossRef]

Roberts, P. H.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991).
[CrossRef]

Ruane, R. E.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991).
[CrossRef]

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Sasiela, R. J.

R. J. Sasiela, J. G. Mooney, “An optical phase reconstructor based on using a multiplier-accumulator approach,” in Adaptive Optics, J. E. Ludman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.551, 170–176 (1985).
[CrossRef]

Slavin, A. C.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Spinhirne, J. M.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

P. R. McCullough, R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, J. F. Moroney, R. A. Cleis, “PIG’s in the Trapezium,” in Massive Stars: Their Lives in the Interstellar Medium, J. Cassinelli, E. Churchwell, eds., Vol. 35 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992).

Stevens, K. B.

K. B. Stevens, “Remote measurement of the atmospheric isoplanatic angle and determination of refractive turbulence profiles by direct inversion of the scintillation amplitude covariance function with Tikhonov regularization,” Ph.D. dissertation NPS-61-86-008 (Naval Postgraduate School, Monterey, Calif., 1985).

Swindle, D. W.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Tyler, G. A.

Vidal, J. L.

P. Laques, J. L. Vidal, “Detection of a new type of condensation in the center of the Orion Nebula by means of S20 photocathode cells associated with a Lallemand electronic camera,” Astron. Astrophys. 73, 97–106 (1973).

Walters, D. L.

Washeba, J. F.

M. A. Ealey, J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990).
[CrossRef]

Wild, W. J.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Wopat, L. M.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991).
[CrossRef]

Wynia, J. M.

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

Zollars, B. G.

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[CrossRef]

Astron. Astrophys. (1)

P. Laques, J. L. Vidal, “Detection of a new type of condensation in the center of the Orion Nebula by means of S20 photocathode cells associated with a Lallemand electronic camera,” Astron. Astrophys. 73, 97–106 (1973).

Bull. Am. Astron. Soc. (2)

R. Q. Fugate, C. H. Higgins, J. M. Wynia, W. J. Lange, A. C. Slavin, W. J. Wild, M. P. Jelonek, M. T. Donovan, S. J. Cusumano, J. M. Anderson, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. R. Moroney, K. S. Nickerson, D. W. Swindle, R. A. Cleis, “Experimental demonstration of real time atmospheric compensation with adaptive optics employing laser guide stars,” Bull. Am. Astron. Soc. 23, 898 (1991).

C. A. Primmerman, “Adaptive optics experiments using synthetic beacons,” Bull. Am. Astron. Soc. 23, 898 (1991).

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (2)

Nature (London) (2)

C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
[CrossRef]

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991).
[CrossRef]

Opt. Eng. (1)

M. A. Ealey, J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990).
[CrossRef]

Other (6)

B. L. Ellerbroek, “Comparison of least-squares and minimal variance reconstructors for turbulence compensation in the presence of noise: analysis and results,” (Optical Sciences Company, Placentia, Calif., 1986).

These observations were suggested by Peter McCollough, University of California, Berkeley, Calif. (personal communication, September1991).

P. R. McCullough, R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, J. F. Moroney, R. A. Cleis, “PIG’s in the Trapezium,” in Massive Stars: Their Lives in the Interstellar Medium, J. Cassinelli, E. Churchwell, eds., Vol. 35 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992).

R. J. Sasiela, J. G. Mooney, “An optical phase reconstructor based on using a multiplier-accumulator approach,” in Adaptive Optics, J. E. Ludman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.551, 170–176 (1985).
[CrossRef]

K. B. Stevens, “Remote measurement of the atmospheric isoplanatic angle and determination of refractive turbulence profiles by direct inversion of the scintillation amplitude covariance function with Tikhonov regularization,” Ph.D. dissertation NPS-61-86-008 (Naval Postgraduate School, Monterey, Calif., 1985).

B. L. Ellerbroek, “Demonstration of improved resolution by deconvolution of laser guide star compensated images,” in Laser Guide Star Adaptive Optics Workshop Proceedings, R. Q. Fugate, ed. (Phillips Laboratory, Albuquerque, N.M., 1992), pp. 227–237.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (28)

Fig. 1
Fig. 1

Schematic of the laser-guide-star adaptive optics at the SOR 1.5-m telescope facility showing the arrangement of the elevation over azimuth-gimballed telescope, coudé relay optics, beacon laser, coudé room optics, and source simulators in the vertical pier. The mezzanine and control room house reconstructor diagnostics, telescope control, steering-mirror control, atmospheric instruments, propagation safety, and wave-front-sensor processor. DM, deformable mirror.

Fig. 2
Fig. 2

Schematic showing the pier relay optics connecting the 1.5-m telescope to the coudé-room optics. The imaging relay consists of spherical mirror M8 mounted under the 1.5-m telescope and either a doublet lens (Gen I) or an off-axis parabola (Gen II) on the coudé-room table. The coudé path permits the insertion of two source simulators, one for simulating natural stars at infinity and one for simulating laser guide stars at 10 km. M’s, mirrors.

Fig. 3
Fig. 3

Gen I coudé-room optical layout: (1) vertical pier for relaying the 20-mm-diameter copper-vapor laser (CVL) beam; (2) ~5× focusing beam expander to set the beam size (9.7 cm) and the divergence that was needed to focus the beam at a 10-km range; (3) dichroic mirror, which reflects the CVL lines but transmits longer-wavelength (0.65 ± 0.05 μm) starlight to the track sensor; (4) 11-cm clear-aperture Brewster-angle plate-polarizing beam splitter (PBS) with dual-wavelength (0.5106- and 0.5782-μm) operation; (7) custom-made, 12.5 cm-diameter, 7.29-m focal-length doublet lens, which serves as the second element in the pupil-imaging relay optics; (8) multiple-order λ/4 plate tuned to each line of the CVL; (9), (10) ~4× beam-reducing telescope for the wave-front sensor (WFS) optics; (11) dichroic mirror, which passes wavelengths that are greater than ~0.85 μm to (19) and (18), the scoring-camera focusing lens, but reflects wavelengths that are shorter than ~0.85 μm to the WFS optics; (12) laser-leg WFS optics operating at 0.55 ± 0.1 μm, consisting of reimaging optics and a Shack–Hartmann lenslet array; (13) star-leg WFS operating at 0.72 ± 0.1 μm; (14) intensified 64 × 64 pixel Reticon array WFS camera coupled to four Gen I fiber-optically coupled image intensifiers, with the first two stages being gatable to block near-field laser backscatter; (15) track-sensor focusing mirror; (16) dual-axis linear-array track sensor; (17) intensified charge-injection-device camera for real-time monitoring of tracker and image-compensation performance.

Fig. 4
Fig. 4

Gen I wave-front-sensor subaperture geometry and deformable-mirror (DM) actuator geometry.

Fig. 5
Fig. 5

Gen I natural-guide-star (NGS) and laser-guide-star (LGS) adaptive-optics results of 20-ms-exposure Strehl-ratio measurements at 0.88 μm obtained on November 10, 1989, with the 1.5-m SOR telescope and the star Betelgeuse. Data sequences are shown for tilt-only correction, NGS-beacon higher-order compensation, and LGS-beacon higher-order compensation. The observations were made at an average zenith angle of 31°, and r0 varied between 14 and 19 cm at 0.88 μm (8–10.5 cm at 0.5 μm at zenith). The Greenwood frequency fG was 30–35 Hz at 0.88 μm (40–45 Hz at the measurement wavelength of 0.72 μm), and the adaptive-optics closed-loop bandwidth f3dB was 65 Hz.

Fig. 6
Fig. 6

Short-exposure (20-ms) PSF’s at 0.88 μm obtained with the Gen I adaptive-optics system on the 1.5-m SOR telescope with the natural star Betelgeuse and a laser guide star (LGS). These are cross sections of the images that are shown in Fig. 7. They represent the best results for the data that were collected on November 10, 1989. The cross section of a normalized diffraction-limited image is shown for comparison. Even though the FWHM sizes of the images are comparable with the diffraction limit, there is a large amount of energy in the wings of the images. The Strehl ratios are 0.275 and 0.202 for the images that were compensated by the natural guide star (NGS) and the LGS, respectively.

Fig. 7
Fig. 7

Gen I short-exposure (20-ms) images at 0.88 μm of Betelgeuse compensated by (a) natural-guide-star and (b) laser-guide-star beacons. These are the images corresponding to the cross sections that are shown in Fig. 6 (0.049 arcsec/pixel, 1.57-arcsec fields). The natural-guide-star compensated image has a peak intensity of 4789 counts, and the laser-guide-star compensated image has a peak intensity of 3527 counts.

Fig. 8
Fig. 8

Gen I short-exposure theoretical and experimental MTF’s for the two images that are shown in Fig. 7. The analytical results are based on best estimates of the atmospheric-turbulence conditions at the time of the observations, sensor noise, and the actual system parameters. The experimental results for no compensation (open loop) are also shown. The discrepancy between natural-guide-star NGS theory and experiment may be due to ~30% of the deformable mirror’s actuators not being fully functional.

Fig. 9
Fig. 9

Laser-guide-star compensation of a binary star with the Gen I system. (a) An uncompensated view of 30 ζ Bootes through the 1.5-m telescope. This image was exposed for 1 s and has a peak intensity of 150. The image in (b) was compensated with the laser-guide-star adaptive optics, was exposed for only 250 ms, and has a peak intensity of 411. The components of the binary star have visual magnitudes 4.52 and 4.55 and are separated by ~0.9 arcsec. The diagonal lines were caused by noise in the camera.

Fig. 10
Fig. 10

Gen I short-exposure natural-guide-star (NGS) compensation adaptive-optics results with Arcturus, May 1989. Here we compare an uncompensated image with a compensated image and a calculated diffraction-limited image. The atmospheric conditions were less severe during these observations than for those of Fig. 7 because there was no jet stream overhead, and the Greenwood frequency was estimated to be less than 10 Hz (0.88 μm), versus ~35 Hz for the data that are given in Fig. 7. Unfortunately, at this time the laser-guide-star adaptive optics was not on line, and a direct comparison with the NGS could not be made in these atmospheric conditions.

Fig. 11
Fig. 11

Gen II coudé-room optical layout. The coudé feed to the telescope is at the far right. The off-axis paraboloids (OAP’s) and the lens image the entrance pupil of the telescope on the deformable mirror and the Shack–Hartmann lenslet arrays in the copper-vapor laser (CVL) and the star wave-front sensor (WSF) paths. The WYKO, Inc., phase-measuring interferometer provides a real-time view of the mirror wave-front slopes and a means of accurately calibrating influence functions and flattening the mirror. The IR long-wave-pass beam splitter (IRLWP BS) reflects wavelengths that are shorter than 1 μm and transmits wavelengths that are greater than 1 μm out to the cutoff of 2.5 μm of the fused-silica window (not shown). The LWP BS reflects wavelengths that are shorter then 0.85 μm into the star–CVL separator, where light is subsequently directed into the WFS or the auxiliary red–orange sensor path, if the switch mirror is installed. The CCD monolithic-lenslet-module camera, an unintensified camera that is switched into the focal plane of the lenslet arrays as an aid in registering the WFS to the deformable-mirror actuators, is used only with the source simulator in the pier. All the light passing through the LWP BS goes either to the tracker alone, if the 100% reflecting mirror is installed, or to the tracker and the scoring camera (which was used for most of the results that are presented here) if the 50/50 BS is installed. The CVL beam is brought in under the main optical path and is injected into the coudé path at the aperture-sharing element.

Fig. 12
Fig. 12

Gen II wave-front-sensor subaperture geometry and deformable-mirror actuator geometry.

Fig. 13
Fig. 13

Natural-guide star compensated images at 0.88 μm of a binary star (ζ Orionis, mv = 1.88 and mv = 4.02, 2.3-arcsec separation) that were obtained on the first night of operation of the Gen II adaptive-optics system, February 28, 1992. The brighter component was used as a natural-guide-star beacon. (a) Tilt correction only, peak intensity 212 counts, exposure time 60 ms. (b) Closed-loop adaptive optics, peak intensity 1600 counts, exposure time 60 ms. (c) Closed-loop adaptive optics, peak intensity 12,456, exposure time 500 ms. Note that the peak intensity level increased a factor of 7.5 for 60-ms exposures going from open to closed loop. With the loop closed, the intensity increased a factor of 7.78 for an increase of 8.33 in exposure time. The gray scale is stretched in each image to emphasize the fainter companion star. Each image is 7.2 arcsec square.

Fig. 14
Fig. 14

Comparison of (a) 1-s tilt-only-corrected stellar image and (b) a 10-ms natural-guide-star higher-order fully compensated image of the star Capella. The FWHM image sizes are (a) 1.8 and (b) 0.13 arcsec, and the Strehl ratios are (a) ~0.02 and (b) 0.64. The fields are 2.9 arcsec square. The higher-order adaptive optics were operating at a 105-Hz closed-loop bandwidth. The Greenwood frequency was ~28 Hz, and r0 was ~15 cm (both at 0.88 μm). Both images are printed on the same gray-scale palette, permitting a comparison of relative image brightness.

Fig. 15
Fig. 15

Gen II short-exposure (10-ms) Strehl-ratio results for compensation with the natural guide star Arcturus. The results show a sequence of Strehl ratios that were calculated from scoring-camera images that were centered at a 0.88-μm wavelength. The average Fried coherence length was 18 cm, and the Greenwood frequency was 19 Hz (both at 0.88 μm). The adaptive-optics closed-loop bandwidth was 105 Hz.

Fig. 16
Fig. 16

Short-exposure (10-ms) natural-guide-star (NGS) and laser-guide-star (LGS) compensated images of Arcturus obtained on April 4, 1992. Two plate scales of the same images are shown. The elevation angle was 65°, r0 was 13 cm, and the Greenwood frequency was ~32 Hz (both at 0.88 μm). The higher-order closed-loop bandwidth was 75 Hz, and the tilt-correction bandwidth was between 50 and 75 Hz.

Fig. 17
Fig. 17

Mesh plots of (a) the natural-guide-star and (b) the laser-guide-star 10-ms-exposure Gen II compensated stellar images that are shown in Fig. 16 (Arcturus, April 4, 1992, at 0.88 μm). Each image is 2.9 arcsec square. The image in (a) has a Strehl ratio of 0.59 and a FWHM of 0.13 arcsec. The image in (b) has a Strehl ratio of 0.48 and a FWHM of 0.13 arcsec. Note the differences in the relative height of the peak intensities and the additional light in the wings of the image compensated by the laser.

Fig. 18
Fig. 18

Logarithmic contour plots of (a) the natural-guide-star and (b) the laser-guide-star compensated 10-ms-exposure images of Arcturus that are shown in Figs. 16 and 17. Contour intervals are computed as stellar magnitudes, with the peak pixel in the image arbitrarily set to 0.0. Data do not exist to flat field the image properly, and intensities that are fainter than 6th magnitude are not shown.

Fig. 19
Fig. 19

Comparison of short-exposure natural-guide-star (NGS) and laser-guide-star (LGS) compensated image cross sections: PSF’s, semilogarithmic plots of x-axis cuts through the images that are shown in Figs. 16 and 17. The intensity scale is in stellar-magnitude units. The triangles show the location and the magnitude of the peaks in the Airy pattern and the angular location of the zeros. There is some correlation in the compensated images with the first Airy diffraction-pattern maximum.

Fig. 20
Fig. 20

Short-exposure (10-ms) Gen II uncompensated and laser-guide-star compensated images at 0.88 μm of Arcturus, April 4, 1992. Each image is 2.9 arcsec square. (a) The uncompensated image shows a typical speckle pattern. (b) The laser-guide-star compensated image is the same as that shown in Figs. 16 and 19, with the same Strehl ratio and FWHM, and has a peak amplitude that is 8.98 times greater than the brightest speckle in the open-loop image.

Fig. 21
Fig. 21

1-s-exposure Gen II uncompensated and laser-guide-star compensated images at 0.88 μm of the Yale bright star 5506 (mv = 2.7), April 24, 1992. Each image is 2.9 arcsec square. The peak intensity of (a) the tilt-only-compensated open-loop image is 13.8 times smaller than that of (b) the compensated image. The FWHM sizes of the two images are (a) 1.65 arcsec and (b) 0.18 arcsec, respectively. The Strehl ratio of the compensated image is 0.244. The Fried coherence diameter averaged 8.8 cm (0.88 μm) during the evening, and the average elevation angle was 80°. The Greenwood frequency was measured at 31 Hz (0.88 μm), and the closed-loop bandwidth of the laser-guide-star higher-order loop was 75 Hz. The tracker bandwidth was ~35–50 Hz.

Fig. 22
Fig. 22

1-s-exposure laser-guide-star (b) compensated versus (a) uncompensated images of Yale bright star 5506, with 2.9 × 2.3 arcsec fields. These are gray-scale renditions of the data that are shown in Fig. 21. The images are printed to show proper relative intensities (no autoscaling).

Fig. 23
Fig. 23

Semilogarithmic plots of the open- and the closed-loop cross sections for 1-s-exposures of the uncompensated and laser-guide-star (LGS) compensated images that are shown in Figs. 21 and 22.

Fig. 24
Fig. 24

Linear plots of the open- and the closed-loop cross sections for 1-s-exposures of the uncompensated and compensated images that are shown in Figs. 21 and 22.

Fig. 25
Fig. 25

Effect of exposure time on Gen II laser-guide-star compensated images of Yale bright star 5506 (mV = 2.7), April 24, 1992. Each image is 2.9 arcsec square. These images were exposed for (a) 100 ms, (b) 10 ms, (c) 2 s (saturated at 16,383), and (d) 1 s, correponding to Strehl ratios of (a) 0.247 (FWHM 0.14 arcsec; intensity, 1128), (b) 0.452 (FWHM 0.13 arcsec; intensity, 381), and (d) 0.244 (FWHM 0.18 arcsec; intensity, 10,996) (no Strehl value can be calculated for (c). The peaks were normalized to the peak of the 1-s exposure. We see in general a slight broadening of the central core and a filling in of the skirt as the exposure time increases.

Fig. 26
Fig. 26

Gen II Strehl-ratio results for natural-guide-star (NGS) and laser-guide-star (LGS) compensated images of varying exposure (exp.) times with Yale bright star 5506 (mv = 2.7). This set of observations was made over a period of 2 h. There were significant variations in the atmospheric turbulence during this period. The value of r0 deteriorated from 19 to 8.8 cm (0.88 μm), and the Greenwood frequency increased from 25 to 52 Hz during the experiment. The closed-loop bandwidth of the adaptive optics varied from 65 to 130 Hz.

Fig. 27
Fig. 27

Gen II MTF’s. This graph shows the best short-exposure and typical long-exposure MTF’s for laser-guide-star (LGS) operation and the best short-exposure MTF for the natural-guide-star (NGS) adaptive optics of the Gen II system. A typical short-exposure MTF for no adaptive optics is also shown.

Fig. 28
Fig. 28

Laser-guide-star compensated image of the Trapezium region in Orion, April 9, 1992. Elevation angle was 31°, and seeing was 2.5–3 arcsec at this elevation. This image was made with a camera in the red-orange sensor path (see Fig. 11) at a scale of 0.07 arcsec/pixel. A H-α filter was used to enhance the partially ionized globules among the four bright stars. Exposure time was 300 s. The brightest star saturated the camera (white spot). The total field is 35 arcsec. The FWHM of the star images varies between 0.3 and 0.5 arcsec. These results are satisfactory considering that the image was produced with a 1.5-m telescope in the desert at 30° elevation.

Tables (3)

Tables Icon

Table 1 Generation I Laser-Guide-Star Experiment Parameters

Tables Icon

Table 2 Generation II Laser-Guide-Star Experiment Parameters

Tables Icon

Table 3 Major Sources of Residual Wave-Front Error for the Generation I and the Generation II Systems

Metrics