Abstract

A new concept is described for creating artificial beacons for atmospheric-turbulence compensation. A laser tuned to the sodium D2 line is used to excite resonant optical backscattering from the sodium layer in the upper atmosphere. The performance of such a system is compared with that expected from artificial beacons based on Rayleigh scattering in the lower atmosphere. It is found that sodium scattering has a more favorable scaling to large-aperture systems. Applications to the compensation of ground-based astronomical telescopes for atmospheric turbulence are described.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Strohbehn, “Modern theories of the propagation of optical waves in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J. Strohbehn, ed., Vol. 25 of Topics in Applied Physics (Springer, New York, 1978), pp. 45–104.
    [CrossRef]
  2. J. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
    [CrossRef]
  3. D. Fried, “Varieties of anisoplanatism,” in Imaging Through the Atmosphere, J. C. Wyant, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 75, 20–29 (1976).
    [CrossRef]
  4. S. Pollaine, A. Buffington, F. S. Crawford, “Measurement of the size of the isoplanatic patch using a phase-correcting telescope,”J. Opt. Soc. Am. 69, 84–89 (1979).
    [CrossRef]
  5. G. Megie, J. E. Blamont, “Laser sounding of atmospheric sodium: interpretation in terms of global atmospheric parameters,” Planet. Space Sci. 25, 1093–1109 (1977).
    [CrossRef]
  6. V. M. Slipher, “Spectrographic studies of the planets,” Mon. Not. R. Astron. Soc. 93, 657–668 (1933).
  7. J. E. Blamont, T. M. Donahue, “The dayglow of the sodium Dlines,”J. Geophys. Res. 66, 1407–1423 (1961).
    [CrossRef]
  8. J. Albano, J. E. Blamont, M. L. Chanin, M. Petitdidier, “Observation of the dayglow at the resonance wavelengths of sodium and potassium: seasonal and diurnal variation,” Ann. Geophys. 26, 151–160 (1970).
  9. M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature (London) 221, 456–459 (1969).
    [CrossRef]
  10. A. J. Gibson, M. C. W. Sandford, “The seasonal variation of the night-time sodium layer,”J. Atmos. Terr. Phys. 33, 1675–1684 (1971).
    [CrossRef]
  11. G. Hernandez, “Reaction broadening of the line profiles of atomic sodium in the night airglow,” Geophys. Res. Lett. 2, 103–105 (1975).
    [CrossRef]
  12. M. Partowmah, F. L. Roesler, “Absorption studies of daytime sodium abundance,”J. Geophys. Res. 82, 2607–2612 (1977).
    [CrossRef]
  13. D. M. Simonich, B. R. Clemesha, V. W. J. H. Kirchhoff, “The mesospheric sodium layer at 23°S: nocturnal and seasonal variations,”J. Geophys. Res. 84, 1543–1550 (1979).
    [CrossRef]
  14. M. Gadsden, “Antarctic twilight observations 2: sodium emission at 90°S,” Ann. Geophys. 25, 721–730 (1969).
  15. D. M. Hunten, “A meteor-ablation model of the sodium and potassium layers,” Geophys. Res. Lett. 8, 369–372 (1981).
    [CrossRef]
  16. B. R. Clemesha, V. W. J. H. Kirchhoff, D. M. Simonich, “Comments on a meteor-ablation model of the sodium and potassium layers,” Geophys. Res. Lett. 8, 1023–1025 (1981).
    [CrossRef]
  17. J. F. Granger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762–763 (1962).
    [CrossRef]
  18. J. F. Noxon, “Day airglow,” Space Sci. Rev. 8, 92–134 (1968).
    [CrossRef]
  19. D. M. Hunten, “Surface albedo and the filling-in of Fraunhofer lines in the day sky,” Astrophys. J. 159, 1107–1110 (1970).
    [CrossRef]
  20. D. M. Hunten, “Airglow—introduction and review,” in The Radiating Atmosphere, B. M. McCormac, ed., Vol. 24 of Astrophysics and Space Science Library (Reidel, Dordrecht, The Netherlands, 1971), pp. 3–16.
  21. J. Chamberlain, Theory of Planetary Atmospheres (Academic, New York, 1978), App. III, p. 302.
  22. C. W. Allen, Astrophysical Quantities, 3rd ed. (Athelone, London, 1973), Chap. 6, p. 119.
  23. N. A. Kurnit, I. D. Abella, S. R. Hartman, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–573 (1964).
    [CrossRef]
  24. S. L. McCall, E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967).
    [CrossRef]
  25. N. Bloembergen, R. V. Pound, “Radiation damping in magnetic resonance experiments,” Phys. Rev. 95, 8–12 (1954).
    [CrossRef]
  26. R. G. Brewer, R. L. Shoemaker, “Photon echoes and optical nutation in molecules,” Phys. Rev. Lett. 27, 632–634 (1971).
    [CrossRef]
  27. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
    [CrossRef]
  28. T. McClelland, Frequency Electronics, Inc., Mitchell Field, N.Y. 11553 (personal communication, 1982).
  29. N. J. Woolf, “High resolution imaging from the ground,” in G. Burbidge, ed., Annual Reviews of Astronomy and Astrophysics (Annual Reviews, Palo Alto, Calif., 1982), Vol. 20, pp. 367–398.
    [CrossRef]
  30. R. A. Muller, A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,”J. Opt. Soc. Am. 64, 1200–1210 (1974); F. J. Dyson, “Photon noise and atmospheric noise in active optical systems,”J. Opt. Soc. Am. 65, 551–558 (1975).
    [CrossRef]
  31. F. J. Dyson, “Image processing and live optics,” in Proceedings of the ESO Conference on Optical Telescopes of the Future, F. Pacini, W. Richter, R. N. Wilson, eds. (European Southern Observatory, Garching, Germany, 1978), pp. 439–444.

1981 (2)

D. M. Hunten, “A meteor-ablation model of the sodium and potassium layers,” Geophys. Res. Lett. 8, 369–372 (1981).
[CrossRef]

B. R. Clemesha, V. W. J. H. Kirchhoff, D. M. Simonich, “Comments on a meteor-ablation model of the sodium and potassium layers,” Geophys. Res. Lett. 8, 1023–1025 (1981).
[CrossRef]

1979 (2)

D. M. Simonich, B. R. Clemesha, V. W. J. H. Kirchhoff, “The mesospheric sodium layer at 23°S: nocturnal and seasonal variations,”J. Geophys. Res. 84, 1543–1550 (1979).
[CrossRef]

S. Pollaine, A. Buffington, F. S. Crawford, “Measurement of the size of the isoplanatic patch using a phase-correcting telescope,”J. Opt. Soc. Am. 69, 84–89 (1979).
[CrossRef]

1978 (1)

J. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
[CrossRef]

1977 (2)

G. Megie, J. E. Blamont, “Laser sounding of atmospheric sodium: interpretation in terms of global atmospheric parameters,” Planet. Space Sci. 25, 1093–1109 (1977).
[CrossRef]

M. Partowmah, F. L. Roesler, “Absorption studies of daytime sodium abundance,”J. Geophys. Res. 82, 2607–2612 (1977).
[CrossRef]

1975 (1)

G. Hernandez, “Reaction broadening of the line profiles of atomic sodium in the night airglow,” Geophys. Res. Lett. 2, 103–105 (1975).
[CrossRef]

1974 (1)

1972 (1)

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

1971 (2)

R. G. Brewer, R. L. Shoemaker, “Photon echoes and optical nutation in molecules,” Phys. Rev. Lett. 27, 632–634 (1971).
[CrossRef]

A. J. Gibson, M. C. W. Sandford, “The seasonal variation of the night-time sodium layer,”J. Atmos. Terr. Phys. 33, 1675–1684 (1971).
[CrossRef]

1970 (2)

J. Albano, J. E. Blamont, M. L. Chanin, M. Petitdidier, “Observation of the dayglow at the resonance wavelengths of sodium and potassium: seasonal and diurnal variation,” Ann. Geophys. 26, 151–160 (1970).

D. M. Hunten, “Surface albedo and the filling-in of Fraunhofer lines in the day sky,” Astrophys. J. 159, 1107–1110 (1970).
[CrossRef]

1969 (2)

M. Gadsden, “Antarctic twilight observations 2: sodium emission at 90°S,” Ann. Geophys. 25, 721–730 (1969).

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature (London) 221, 456–459 (1969).
[CrossRef]

1968 (1)

J. F. Noxon, “Day airglow,” Space Sci. Rev. 8, 92–134 (1968).
[CrossRef]

1967 (1)

S. L. McCall, E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967).
[CrossRef]

1964 (1)

N. A. Kurnit, I. D. Abella, S. R. Hartman, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–573 (1964).
[CrossRef]

1962 (1)

J. F. Granger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762–763 (1962).
[CrossRef]

1961 (1)

J. E. Blamont, T. M. Donahue, “The dayglow of the sodium Dlines,”J. Geophys. Res. 66, 1407–1423 (1961).
[CrossRef]

1954 (1)

N. Bloembergen, R. V. Pound, “Radiation damping in magnetic resonance experiments,” Phys. Rev. 95, 8–12 (1954).
[CrossRef]

1933 (1)

V. M. Slipher, “Spectrographic studies of the planets,” Mon. Not. R. Astron. Soc. 93, 657–668 (1933).

Abella, I. D.

N. A. Kurnit, I. D. Abella, S. R. Hartman, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–573 (1964).
[CrossRef]

Albano, J.

J. Albano, J. E. Blamont, M. L. Chanin, M. Petitdidier, “Observation of the dayglow at the resonance wavelengths of sodium and potassium: seasonal and diurnal variation,” Ann. Geophys. 26, 151–160 (1970).

Allen, C. W.

C. W. Allen, Astrophysical Quantities, 3rd ed. (Athelone, London, 1973), Chap. 6, p. 119.

Blamont, J. E.

G. Megie, J. E. Blamont, “Laser sounding of atmospheric sodium: interpretation in terms of global atmospheric parameters,” Planet. Space Sci. 25, 1093–1109 (1977).
[CrossRef]

J. Albano, J. E. Blamont, M. L. Chanin, M. Petitdidier, “Observation of the dayglow at the resonance wavelengths of sodium and potassium: seasonal and diurnal variation,” Ann. Geophys. 26, 151–160 (1970).

J. E. Blamont, T. M. Donahue, “The dayglow of the sodium Dlines,”J. Geophys. Res. 66, 1407–1423 (1961).
[CrossRef]

Bloembergen, N.

N. Bloembergen, R. V. Pound, “Radiation damping in magnetic resonance experiments,” Phys. Rev. 95, 8–12 (1954).
[CrossRef]

Bowman, M. R.

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature (London) 221, 456–459 (1969).
[CrossRef]

Brewer, R. G.

R. G. Brewer, R. L. Shoemaker, “Photon echoes and optical nutation in molecules,” Phys. Rev. Lett. 27, 632–634 (1971).
[CrossRef]

Buffington, A.

Chamberlain, J.

J. Chamberlain, Theory of Planetary Atmospheres (Academic, New York, 1978), App. III, p. 302.

Chanin, M. L.

J. Albano, J. E. Blamont, M. L. Chanin, M. Petitdidier, “Observation of the dayglow at the resonance wavelengths of sodium and potassium: seasonal and diurnal variation,” Ann. Geophys. 26, 151–160 (1970).

Clemesha, B. R.

B. R. Clemesha, V. W. J. H. Kirchhoff, D. M. Simonich, “Comments on a meteor-ablation model of the sodium and potassium layers,” Geophys. Res. Lett. 8, 1023–1025 (1981).
[CrossRef]

D. M. Simonich, B. R. Clemesha, V. W. J. H. Kirchhoff, “The mesospheric sodium layer at 23°S: nocturnal and seasonal variations,”J. Geophys. Res. 84, 1543–1550 (1979).
[CrossRef]

Crawford, F. S.

Donahue, T. M.

J. E. Blamont, T. M. Donahue, “The dayglow of the sodium Dlines,”J. Geophys. Res. 66, 1407–1423 (1961).
[CrossRef]

Dyson, F. J.

F. J. Dyson, “Image processing and live optics,” in Proceedings of the ESO Conference on Optical Telescopes of the Future, F. Pacini, W. Richter, R. N. Wilson, eds. (European Southern Observatory, Garching, Germany, 1978), pp. 439–444.

Fried, D.

D. Fried, “Varieties of anisoplanatism,” in Imaging Through the Atmosphere, J. C. Wyant, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 75, 20–29 (1976).
[CrossRef]

Gadsden, M.

M. Gadsden, “Antarctic twilight observations 2: sodium emission at 90°S,” Ann. Geophys. 25, 721–730 (1969).

Gibson, A. J.

A. J. Gibson, M. C. W. Sandford, “The seasonal variation of the night-time sodium layer,”J. Atmos. Terr. Phys. 33, 1675–1684 (1971).
[CrossRef]

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature (London) 221, 456–459 (1969).
[CrossRef]

Granger, J. F.

J. F. Granger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762–763 (1962).
[CrossRef]

Hahn, E. L.

S. L. McCall, E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967).
[CrossRef]

Happer, W.

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

Hardy, J.

J. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
[CrossRef]

Hartman, S. R.

N. A. Kurnit, I. D. Abella, S. R. Hartman, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–573 (1964).
[CrossRef]

Hernandez, G.

G. Hernandez, “Reaction broadening of the line profiles of atomic sodium in the night airglow,” Geophys. Res. Lett. 2, 103–105 (1975).
[CrossRef]

Hunten, D. M.

D. M. Hunten, “A meteor-ablation model of the sodium and potassium layers,” Geophys. Res. Lett. 8, 369–372 (1981).
[CrossRef]

D. M. Hunten, “Surface albedo and the filling-in of Fraunhofer lines in the day sky,” Astrophys. J. 159, 1107–1110 (1970).
[CrossRef]

D. M. Hunten, “Airglow—introduction and review,” in The Radiating Atmosphere, B. M. McCormac, ed., Vol. 24 of Astrophysics and Space Science Library (Reidel, Dordrecht, The Netherlands, 1971), pp. 3–16.

Kirchhoff, V. W. J. H.

B. R. Clemesha, V. W. J. H. Kirchhoff, D. M. Simonich, “Comments on a meteor-ablation model of the sodium and potassium layers,” Geophys. Res. Lett. 8, 1023–1025 (1981).
[CrossRef]

D. M. Simonich, B. R. Clemesha, V. W. J. H. Kirchhoff, “The mesospheric sodium layer at 23°S: nocturnal and seasonal variations,”J. Geophys. Res. 84, 1543–1550 (1979).
[CrossRef]

Kurnit, N. A.

N. A. Kurnit, I. D. Abella, S. R. Hartman, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–573 (1964).
[CrossRef]

McCall, S. L.

S. L. McCall, E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967).
[CrossRef]

McClelland, T.

T. McClelland, Frequency Electronics, Inc., Mitchell Field, N.Y. 11553 (personal communication, 1982).

Megie, G.

G. Megie, J. E. Blamont, “Laser sounding of atmospheric sodium: interpretation in terms of global atmospheric parameters,” Planet. Space Sci. 25, 1093–1109 (1977).
[CrossRef]

Muller, R. A.

Noxon, J. F.

J. F. Noxon, “Day airglow,” Space Sci. Rev. 8, 92–134 (1968).
[CrossRef]

Partowmah, M.

M. Partowmah, F. L. Roesler, “Absorption studies of daytime sodium abundance,”J. Geophys. Res. 82, 2607–2612 (1977).
[CrossRef]

Petitdidier, M.

J. Albano, J. E. Blamont, M. L. Chanin, M. Petitdidier, “Observation of the dayglow at the resonance wavelengths of sodium and potassium: seasonal and diurnal variation,” Ann. Geophys. 26, 151–160 (1970).

Pollaine, S.

Pound, R. V.

N. Bloembergen, R. V. Pound, “Radiation damping in magnetic resonance experiments,” Phys. Rev. 95, 8–12 (1954).
[CrossRef]

Ring, J.

J. F. Granger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762–763 (1962).
[CrossRef]

Roesler, F. L.

M. Partowmah, F. L. Roesler, “Absorption studies of daytime sodium abundance,”J. Geophys. Res. 82, 2607–2612 (1977).
[CrossRef]

Sandford, M. C. W.

A. J. Gibson, M. C. W. Sandford, “The seasonal variation of the night-time sodium layer,”J. Atmos. Terr. Phys. 33, 1675–1684 (1971).
[CrossRef]

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature (London) 221, 456–459 (1969).
[CrossRef]

Shoemaker, R. L.

R. G. Brewer, R. L. Shoemaker, “Photon echoes and optical nutation in molecules,” Phys. Rev. Lett. 27, 632–634 (1971).
[CrossRef]

Simonich, D. M.

B. R. Clemesha, V. W. J. H. Kirchhoff, D. M. Simonich, “Comments on a meteor-ablation model of the sodium and potassium layers,” Geophys. Res. Lett. 8, 1023–1025 (1981).
[CrossRef]

D. M. Simonich, B. R. Clemesha, V. W. J. H. Kirchhoff, “The mesospheric sodium layer at 23°S: nocturnal and seasonal variations,”J. Geophys. Res. 84, 1543–1550 (1979).
[CrossRef]

Slipher, V. M.

V. M. Slipher, “Spectrographic studies of the planets,” Mon. Not. R. Astron. Soc. 93, 657–668 (1933).

Strohbehn, J.

J. Strohbehn, “Modern theories of the propagation of optical waves in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J. Strohbehn, ed., Vol. 25 of Topics in Applied Physics (Springer, New York, 1978), pp. 45–104.
[CrossRef]

Woolf, N. J.

N. J. Woolf, “High resolution imaging from the ground,” in G. Burbidge, ed., Annual Reviews of Astronomy and Astrophysics (Annual Reviews, Palo Alto, Calif., 1982), Vol. 20, pp. 367–398.
[CrossRef]

Ann. Geophys. (2)

J. Albano, J. E. Blamont, M. L. Chanin, M. Petitdidier, “Observation of the dayglow at the resonance wavelengths of sodium and potassium: seasonal and diurnal variation,” Ann. Geophys. 26, 151–160 (1970).

M. Gadsden, “Antarctic twilight observations 2: sodium emission at 90°S,” Ann. Geophys. 25, 721–730 (1969).

Astrophys. J. (1)

D. M. Hunten, “Surface albedo and the filling-in of Fraunhofer lines in the day sky,” Astrophys. J. 159, 1107–1110 (1970).
[CrossRef]

Geophys. Res. Lett. (3)

D. M. Hunten, “A meteor-ablation model of the sodium and potassium layers,” Geophys. Res. Lett. 8, 369–372 (1981).
[CrossRef]

B. R. Clemesha, V. W. J. H. Kirchhoff, D. M. Simonich, “Comments on a meteor-ablation model of the sodium and potassium layers,” Geophys. Res. Lett. 8, 1023–1025 (1981).
[CrossRef]

G. Hernandez, “Reaction broadening of the line profiles of atomic sodium in the night airglow,” Geophys. Res. Lett. 2, 103–105 (1975).
[CrossRef]

J. Atmos. Terr. Phys. (1)

A. J. Gibson, M. C. W. Sandford, “The seasonal variation of the night-time sodium layer,”J. Atmos. Terr. Phys. 33, 1675–1684 (1971).
[CrossRef]

J. Geophys. Res. (3)

J. E. Blamont, T. M. Donahue, “The dayglow of the sodium Dlines,”J. Geophys. Res. 66, 1407–1423 (1961).
[CrossRef]

M. Partowmah, F. L. Roesler, “Absorption studies of daytime sodium abundance,”J. Geophys. Res. 82, 2607–2612 (1977).
[CrossRef]

D. M. Simonich, B. R. Clemesha, V. W. J. H. Kirchhoff, “The mesospheric sodium layer at 23°S: nocturnal and seasonal variations,”J. Geophys. Res. 84, 1543–1550 (1979).
[CrossRef]

J. Opt. Soc. Am. (2)

Mon. Not. R. Astron. Soc. (1)

V. M. Slipher, “Spectrographic studies of the planets,” Mon. Not. R. Astron. Soc. 93, 657–668 (1933).

Nature (London) (2)

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature (London) 221, 456–459 (1969).
[CrossRef]

J. F. Granger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762–763 (1962).
[CrossRef]

Phys. Rev. (1)

N. Bloembergen, R. V. Pound, “Radiation damping in magnetic resonance experiments,” Phys. Rev. 95, 8–12 (1954).
[CrossRef]

Phys. Rev. Lett. (3)

R. G. Brewer, R. L. Shoemaker, “Photon echoes and optical nutation in molecules,” Phys. Rev. Lett. 27, 632–634 (1971).
[CrossRef]

N. A. Kurnit, I. D. Abella, S. R. Hartman, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–573 (1964).
[CrossRef]

S. L. McCall, E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967).
[CrossRef]

Planet. Space Sci. (1)

G. Megie, J. E. Blamont, “Laser sounding of atmospheric sodium: interpretation in terms of global atmospheric parameters,” Planet. Space Sci. 25, 1093–1109 (1977).
[CrossRef]

Proc. IEEE (1)

J. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
[CrossRef]

Rev. Mod. Phys. (1)

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

Space Sci. Rev. (1)

J. F. Noxon, “Day airglow,” Space Sci. Rev. 8, 92–134 (1968).
[CrossRef]

Other (8)

D. Fried, “Varieties of anisoplanatism,” in Imaging Through the Atmosphere, J. C. Wyant, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 75, 20–29 (1976).
[CrossRef]

J. Strohbehn, “Modern theories of the propagation of optical waves in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J. Strohbehn, ed., Vol. 25 of Topics in Applied Physics (Springer, New York, 1978), pp. 45–104.
[CrossRef]

T. McClelland, Frequency Electronics, Inc., Mitchell Field, N.Y. 11553 (personal communication, 1982).

N. J. Woolf, “High resolution imaging from the ground,” in G. Burbidge, ed., Annual Reviews of Astronomy and Astrophysics (Annual Reviews, Palo Alto, Calif., 1982), Vol. 20, pp. 367–398.
[CrossRef]

D. M. Hunten, “Airglow—introduction and review,” in The Radiating Atmosphere, B. M. McCormac, ed., Vol. 24 of Astrophysics and Space Science Library (Reidel, Dordrecht, The Netherlands, 1971), pp. 3–16.

J. Chamberlain, Theory of Planetary Atmospheres (Academic, New York, 1978), App. III, p. 302.

C. W. Allen, Astrophysical Quantities, 3rd ed. (Athelone, London, 1973), Chap. 6, p. 119.

F. J. Dyson, “Image processing and live optics,” in Proceedings of the ESO Conference on Optical Telescopes of the Future, F. Pacini, W. Richter, R. N. Wilson, eds. (European Southern Observatory, Garching, Germany, 1978), pp. 439–444.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Temporal behavior of backscatter resulting from Rayleigh and resonant sodium scattering. A shutter was used to cut off the strong Rayleigh scattering from low altitudes. Source, Ref. 5.

Fig. 2
Fig. 2

Average seasonal variation of sodium density and abundance. The density contour interval is 0.5 × 109 m−3. The dashed curve is the height of maximum density. Source, Ref. 13.

Fig. 3
Fig. 3

Twilight D2-line spectrum. Source, Ref. 11.

Fig. 4
Fig. 4

Solar spectrum near the bottom of the D2 sodium absorption line. (a) A typical processed trace showing moderate terrestrial absorption. The dashed curve shows the bottom of the D2 line of sodium in the absence of terrestrial absorption. The circles are the recorded data points, and the solid curve is the computed fit. (b) The shape and the maximum absolute value of the residuals. This trace, recorded at 9:51 CST, February 15, 1972, yields a vertical abundance of 7.18 × 109 atoms/cm2. Source, Ref. 12.

Fig. 5
Fig. 5

Transitions of sodium atoms in the upper atmosphere.

Fig. 6
Fig. 6

Attenuation in the atmosphere resulting from Rayleigh scattering and scattering in the sodium layer, for various wavelengths.

Fig. 7
Fig. 7

Geometric pattern of fluorescence in the sodium layer.

Fig. 8
Fig. 8

Line profile showing Doppler-broadened sodium absorption in the upper atmosphere.

Fig. 9
Fig. 9

Optical pumping of sodium atoms.

Fig. 10
Fig. 10

Schematic of synthetic-beacon atmospheric-compensation system for a ground-based astronomical telescope.

Fig. 11
Fig. 11

Modifications to the optical train if the beacon laser is boresighted through the telescope primary mirror.

Fig. 12
Fig. 12

Schematic light path to the Nasmyth room, for an altazimuth telescope mount.

Tables (2)

Tables Icon

Table 1 Known Airglow Emissions for the Eartha

Tables Icon

Table 2 Seeing and Diffraction Limits for Ground-Based Telescopes

Equations (54)

Equations on this page are rendered with MathJax. Learn more.

θ 0 < 5 arcsec = 25 μ rad
θ 0 = [ 2.91 k 2 C n 2 ( s ) s 5 / 3 d s ] - 3 / 5 ,
T = 215 ± 15 K ,
NaO + O Na * + O 2 .
g = π F ν σ ( ν ) d ν = π F ν ( π r e c f ) ,
r e = e 2 / m e c 2 = 2.82 × 10 - 13 cm ,
3 S 2 1 / 2 3 P 2 1 , 2 , 3 , 2 ,
0 σ ( ν ) d ν = π r e c f σ p Δ ν ,
Δ ν D = ( 8 ln 2 k T / m λ 2 ) 1 / 2 ,
Δ ν D = 1.19 × 10 9 s - 1 ,
Δ ν eff = 2 × 10 9 s - 1 .
σ p = 8.8 × 10 - 12 cm 2 .
ɛ = σ p d z [ Na ]
N mol = 7.12 × 10 13 cm - 3 ,
τ coll = 1 N mol σ ν = 140 μ s .
τ n = 16 ns
ɛ 4.0 × 10 - 2 = 4 % .
Δ N = N ɛ r 0 2 4 z 2 ,
Δ N / N = 1.23 × 10 - 14 .
η Δ N = 100 ,
N = 8.13 × 10 18 photons .
h ν = 3.38 × 10 - 19 J ,
E = N h ν = 2.75 J .
h = 90 km .
a = h λ / D 5.3 cm ,
M ( D 2 r 0 ) 2 25 ,
2 h 2 λ D 2 10 km .
Δ Θ λ r 0 5 × 10 - 6 rad .
Δ ν n = 1 2 π τ n 10 MHz .
σ n = 1.75 × 10 - 9 cm 2 .
( σ n ) eff = 1.1 × 10 - 9 cm 2 .
Φ sat ( σ n ) eff = 1 / τ n ,
Φ sat = 5.68 × 10 16 photons / cm 2 s = 19.2 mW / cm 2 .
F sat = Φ sat τ n = 1 / ( σ n ) eff = 9 × 10 8 photons / cm 2 .
N sat = F sat π a 2 ( D 2 r 0 ) 2 = 2 × 10 12 photons .
E sat = h ν N sat = 0.68 μ J .
Δ N sat = N sat ɛ 4 π h 2 = 0.8 photon m 2 pulse .
M S = 1 / 2 ,             M I = 3 / 2.
n 3.52.
t m 56 ns .
F = 3.52 / σ = 7.81 × 10 11 photons / cm 2 ,
E h ν F ( π a 2 ) ( D 2 r 0 ) 2 0.6 mJ .
E h ν 1.6 × 10 15 .
Δ N = E h ν ( 1 m ) 2 16 ( 90 km ) 2 = 3.9 × 10 4 photons .
F = 4 × 10 9 photons / cm 2
E = 3 μ J .
H 0.5 G .
ν L = ( 700 kHz / G ) × H 350 kHz .
T L = ( ν L ) - 1 2.86 μ s .
[ O 2 ] = 1.5 × 10 13 cm - 3 ,
[ O ] = 2.4 × 10 11 cm - 3 .
K ex = 10 - 9 cm 3 s - 1 .
1 / τ ex 1.5 × 10 4 s - 1 .
τ ex = 66.7 μ s .

Metrics