Abstract

Mixtures of monochromatic lights that appear achromatic were measured for 50 normal, trichromatic observers ranging in age from 11 to 78 years. Stimuli were presented to one eye as a 1°-diameter, 1-s flash (10-s interstimulus interval) in Maxwellian view. We found the achromatic locus by varying the intensity ratio of each observer’s spectral unique blue and unique yellow while maintaining constant overall retinal illuminance. Measurements were made for three levels of retinal illuminance (10,100,1000 trolands). Additional verification of the position of the achromatic locus in color space was obtained for 23 subjects with the use of a mixture composed of 600-nm light and its spectral complement. There were no significant changes in the achromatic loci as a function of age. The mean achromatic locus in CIE chromaticity space was x, y = 0.31, 0.31 or u′, v′ = 0.21, 0.46. These results suggest that partial compensation for age-related changes in visual mechanisms occurs in a way that preserves constancy of the achromatic locus across the life span.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Walraven, J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31, 2185–2193 (1991).
    [CrossRef] [PubMed]
  2. L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
    [CrossRef] [PubMed]
  3. I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Sci. Papers Bur. Stand. 17, 231–265 (1921).
    [CrossRef]
  4. L. M. Hurvich, D. Jameson, “A psychophysical study of white. I. Neutral adaptation,”J. Opt. Soc. Am. 41, 521–527 (1951).
    [CrossRef] [PubMed]
  5. A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11, 157–160 (1971).
    [CrossRef] [PubMed]
  6. Y. Ejima, S. Takahashi, M. Akita, “Achromatic sensation for trichromatic mixture as a function of stimulus intensity,” Vision Res. 26, 1065–1071 (1986).
    [CrossRef]
  7. J. E. Bailey, R. W. Massof, “In search of the physiological neutral point,” Mod. Probl. Ophthalmol. 13, 135–139 (1974).
    [PubMed]
  8. L. M. Hurvich, D. Jameson, “On the measurement of dichromatic neutral points,” Acta Chromatica 2, 207–216 (1974/1975).
  9. K. Knoblauch, L. Sirovich, B. R. Wooten, “Linearity of hue cancellation in sex-linked dichromacy,” J. Opt. Soc. Am. A 2, 136–146 (1985).
    [CrossRef] [PubMed]
  10. M. Akita, “Cone-interaction in the yellow–blue opponent process,” in Proceedings of Stiles-Wyszecki Memorial Symposium on Color Vision Models, M. Richter, ed. (Muster-Schmidt Verlay, Göttingen, 1987), pp. 161–169.
  11. C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
    [CrossRef] [PubMed]
  12. F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living crystalline lens,” Gerontologia 3, 213–231 (1959).
    [CrossRef]
  13. J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,”J. Opt. Soc. Am. 72, 247–258 (1982).
    [CrossRef] [PubMed]
  14. J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [CrossRef] [PubMed]
  15. R. A. Weale, “Age and the transmittance of the human crystalline lens,”J. Physiol. (London) 395, 577–587 (1988).
  16. J. S. Werner, V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2130 (1988).
    [CrossRef] [PubMed]
  17. C. A. Johnson, A. J. Adams, J. D. Twelker, J. M. Quigg, “Age-related changes in the central visual field for short-wavelength-sensitive pathways,” J. Opt. Soc. Am. A 5, 2131–2139 (1988).
    [CrossRef] [PubMed]
  18. P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
    [CrossRef] [PubMed]
  19. J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
    [CrossRef]
  20. W. D. Wright, Researches on Normal and Defective Colour Vision (Mosby, St. Louis, Mo., 1947).
  21. K. Ruddock, “The effect of age upon colour vision—II. Changes with age in light transmission of the ocular media,” Vision Res. 5, 47–58 (1965).
    [CrossRef] [PubMed]
  22. B. E. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
    [CrossRef] [PubMed]
  23. D. McL. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
    [CrossRef]
  24. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
    [CrossRef] [PubMed]
  25. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
    [CrossRef] [PubMed]
  26. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [CrossRef] [PubMed]
  27. L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
    [CrossRef]
  28. S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
    [CrossRef] [PubMed]
  29. O. J. Dunn, V. A. Clark, Applied Statistics: Analysis of Variance and Regression (Wiley, New York, 1974).
  30. D. B. Judd, D. L. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,”J. Opt. Soc. Am. 54, 1031–1040 (1964).
    [CrossRef]
  31. C. M. Judd, G. H. McClelland, Data Analysis: A Model-Comparison Approach (Harcourt Brace Jovanovich, San Diego, Calif., 1989).
  32. W. D. Wright, “Talking about color,” Color Res. Appl. 13, 138–139 (1988).
    [CrossRef]
  33. B. E. Schefrin, J. S. Werner, “Color scaling of broadband surfaces in younger and older observers,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 703 (1992).
  34. D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [CrossRef] [PubMed]
  35. D. Jameson, L. M. Hurvich, “Opponent-response functions related to measured cone photopigments,”J. Opt. Soc. Am. 58, 429–430 (1968).
    [CrossRef]
  36. G. Haegerstrom-Portnoy, “Short-wavelength-sensitive-cone sensitivity loss with aging: a protective role for macular pigment?” J. Opt. Soc. Am. A 5, 2140–2144 (1988).
    [CrossRef] [PubMed]
  37. H. Hibino, “Red–green and yellow–blue opponent-color responses as a function of retinal eccentricity,” Vision Res. 32, 1955–1964 (1992).
    [CrossRef] [PubMed]
  38. F. M. DeMonasterio, “Macular pigmentation and the spectral sensitivity of retinal ganglion cells of macaques,” Vision Res. 18, 1273–1277 (1978).
    [CrossRef]
  39. E. Zrenner, P. Gouras, “Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina,” in Colour Vision, J. D. Mollen, L. T. Sharpe, eds. (Academic, New York, 1983).
  40. J. Pokorny, V. C. Smith, “Evaluation of single-pigment shift models of anomalous trichromacy,”J. Opt. Soc. Am. 67, 1196–1209 (1977).
    [CrossRef] [PubMed]
  41. L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
    [CrossRef] [PubMed]
  42. M. D’Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
    [CrossRef]
  43. D. Jameson, L. M. Hurvich, “Essay concerning color constancy,” in Annual Review of Psychology (Annual Reviews, Palo Alto, Calif., 1989), pp. 1–22.
    [CrossRef]
  44. J. Walraven, T. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.
    [CrossRef]

1992 (2)

B. E. Schefrin, J. S. Werner, “Color scaling of broadband surfaces in younger and older observers,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 703 (1992).

H. Hibino, “Red–green and yellow–blue opponent-color responses as a function of retinal eccentricity,” Vision Res. 32, 1955–1964 (1992).
[CrossRef] [PubMed]

1991 (1)

J. Walraven, J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef] [PubMed]

1990 (1)

1988 (5)

1987 (2)

C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef] [PubMed]

1986 (4)

L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
[CrossRef]

L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
[CrossRef] [PubMed]

M. D’Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
[CrossRef]

Y. Ejima, S. Takahashi, M. Akita, “Achromatic sensation for trichromatic mixture as a function of stimulus intensity,” Vision Res. 26, 1065–1071 (1986).
[CrossRef]

1985 (1)

1984 (1)

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[CrossRef] [PubMed]

1982 (1)

1981 (1)

1978 (2)

F. M. DeMonasterio, “Macular pigmentation and the spectral sensitivity of retinal ganglion cells of macaques,” Vision Res. 18, 1273–1277 (1978).
[CrossRef]

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

1977 (1)

1974 (4)

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

J. E. Bailey, R. W. Massof, “In search of the physiological neutral point,” Mod. Probl. Ophthalmol. 13, 135–139 (1974).
[PubMed]

1971 (1)

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11, 157–160 (1971).
[CrossRef] [PubMed]

1968 (1)

1966 (1)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

1965 (1)

K. Ruddock, “The effect of age upon colour vision—II. Changes with age in light transmission of the ocular media,” Vision Res. 5, 47–58 (1965).
[CrossRef] [PubMed]

1964 (1)

1959 (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef]

1957 (1)

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef] [PubMed]

1951 (1)

1931 (1)

D. McL. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[CrossRef]

1921 (1)

I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Sci. Papers Bur. Stand. 17, 231–265 (1921).
[CrossRef]

Adams, A. J.

Akita, M.

Y. Ejima, S. Takahashi, M. Akita, “Achromatic sensation for trichromatic mixture as a function of stimulus intensity,” Vision Res. 26, 1065–1071 (1986).
[CrossRef]

M. Akita, “Cone-interaction in the yellow–blue opponent process,” in Proceedings of Stiles-Wyszecki Memorial Symposium on Color Vision Models, M. Richter, ed. (Muster-Schmidt Verlay, Göttingen, 1987), pp. 161–169.

Bailey, J. E.

J. E. Bailey, R. W. Massof, “In search of the physiological neutral point,” Mod. Probl. Ophthalmol. 13, 135–139 (1974).
[PubMed]

Benzschawel, T.

J. Walraven, T. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.
[CrossRef]

Burns, S. A.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[CrossRef] [PubMed]

Cicerone, C. M.

C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Clark, V. A.

O. J. Dunn, V. A. Clark, Applied Statistics: Analysis of Variance and Regression (Wiley, New York, 1974).

D’Zmura, M.

DeMonasterio, F. M.

F. M. DeMonasterio, “Macular pigmentation and the spectral sensitivity of retinal ganglion cells of macaques,” Vision Res. 18, 1273–1277 (1978).
[CrossRef]

Dunn, O. J.

O. J. Dunn, V. A. Clark, Applied Statistics: Analysis of Variance and Regression (Wiley, New York, 1974).

Ejima, Y.

Y. Ejima, S. Takahashi, M. Akita, “Achromatic sensation for trichromatic mixture as a function of stimulus intensity,” Vision Res. 26, 1065–1071 (1986).
[CrossRef]

Elsner, A. E.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[CrossRef] [PubMed]

Gouras, P.

E. Zrenner, P. Gouras, “Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina,” in Colour Vision, J. D. Mollen, L. T. Sharpe, eds. (Academic, New York, 1983).

Haegerstrom-Portnoy, G.

Harvey, L. O.

L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
[CrossRef]

Hibino, H.

H. Hibino, “Red–green and yellow–blue opponent-color responses as a function of retinal eccentricity,” Vision Res. 32, 1955–1964 (1992).
[CrossRef] [PubMed]

Hurvich, L. M.

L. M. Hurvich, D. Jameson, “On the measurement of dichromatic neutral points,” Acta Chromatica 2, 207–216 (1974/1975).

D. Jameson, L. M. Hurvich, “Opponent-response functions related to measured cone photopigments,”J. Opt. Soc. Am. 58, 429–430 (1968).
[CrossRef]

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef] [PubMed]

L. M. Hurvich, D. Jameson, “A psychophysical study of white. I. Neutral adaptation,”J. Opt. Soc. Am. 41, 521–527 (1951).
[CrossRef] [PubMed]

D. Jameson, L. M. Hurvich, “Essay concerning color constancy,” in Annual Review of Psychology (Annual Reviews, Palo Alto, Calif., 1989), pp. 1–22.
[CrossRef]

Jameson, D.

L. M. Hurvich, D. Jameson, “On the measurement of dichromatic neutral points,” Acta Chromatica 2, 207–216 (1974/1975).

D. Jameson, L. M. Hurvich, “Opponent-response functions related to measured cone photopigments,”J. Opt. Soc. Am. 58, 429–430 (1968).
[CrossRef]

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef] [PubMed]

L. M. Hurvich, D. Jameson, “A psychophysical study of white. I. Neutral adaptation,”J. Opt. Soc. Am. 41, 521–527 (1951).
[CrossRef] [PubMed]

D. Jameson, L. M. Hurvich, “Essay concerning color constancy,” in Annual Review of Psychology (Annual Reviews, Palo Alto, Calif., 1989), pp. 1–22.
[CrossRef]

Johnson, C. A.

Judd, C. M.

C. M. Judd, G. H. McClelland, Data Analysis: A Model-Comparison Approach (Harcourt Brace Jovanovich, San Diego, Calif., 1989).

Judd, D. B.

Knoblauch, K.

Krantz, D. H.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Larimer, J.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Lennie, P.

Lucassen, M. P.

J. Walraven, T. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.
[CrossRef]

Lutze, M.

MacAdam, D. L.

Maloney, L. T.

Massof, R. W.

J. E. Bailey, R. W. Massof, “In search of the physiological neutral point,” Mod. Probl. Ophthalmol. 13, 135–139 (1974).
[PubMed]

McClelland, G. H.

C. M. Judd, G. H. McClelland, Data Analysis: A Model-Comparison Approach (Harcourt Brace Jovanovich, San Diego, Calif., 1989).

Nagy, A. L.

C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
[CrossRef] [PubMed]

Nerger, J. L.

C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
[CrossRef] [PubMed]

Norren, D. V.

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

Pokorny, J.

Powell, I.

Priest, I. G.

I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Sci. Papers Bur. Stand. 17, 231–265 (1921).
[CrossRef]

Purdy, D. McL.

D. McL. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[CrossRef]

Quigg, J. M.

Rogowitz, B. E.

J. Walraven, T. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.
[CrossRef]

Ruddock, K.

K. Ruddock, “The effect of age upon colour vision—II. Changes with age in light transmission of the ocular media,” Vision Res. 5, 47–58 (1965).
[CrossRef] [PubMed]

Said, F. S.

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef]

Schefrin, B. E.

B. E. Schefrin, J. S. Werner, “Color scaling of broadband surfaces in younger and older observers,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 703 (1992).

B. E. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
[CrossRef] [PubMed]

Sirovich, L.

Smith, V. C.

Steele, V. G.

Takahashi, S.

Y. Ejima, S. Takahashi, M. Akita, “Achromatic sensation for trichromatic mixture as a function of stimulus intensity,” Vision Res. 26, 1065–1071 (1986).
[CrossRef]

Twelker, J. D.

Valberg, A.

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11, 157–160 (1971).
[CrossRef] [PubMed]

Vos, J. J.

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

Walraven, J.

J. Walraven, J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef] [PubMed]

J. Walraven, T. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.
[CrossRef]

Walraven, P. L.

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

Wandell, B. A.

Weale, R. A.

R. A. Weale, “Age and the transmittance of the human crystalline lens,”J. Physiol. (London) 395, 577–587 (1988).

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef]

Werner, J. S.

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

Wooten, B. R.

Wright, W. D.

W. D. Wright, “Talking about color,” Color Res. Appl. 13, 138–139 (1988).
[CrossRef]

W. D. Wright, Researches on Normal and Defective Colour Vision (Mosby, St. Louis, Mo., 1947).

Wyszecki, G.

Zrenner, E.

E. Zrenner, P. Gouras, “Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina,” in Colour Vision, J. D. Mollen, L. T. Sharpe, eds. (Academic, New York, 1983).

Acta Chromatica (1)

L. M. Hurvich, D. Jameson, “On the measurement of dichromatic neutral points,” Acta Chromatica 2, 207–216 (1974/1975).

Am. J. Psychol. (1)

D. McL. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[CrossRef]

Appl. Opt. (2)

Behav. Res. Methods Instrum. Comput. (1)

L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
[CrossRef]

Color Res. Appl. (2)

W. D. Wright, “Talking about color,” Color Res. Appl. 13, 138–139 (1988).
[CrossRef]

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

Gerontologia (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

B. E. Schefrin, J. S. Werner, “Color scaling of broadband surfaces in younger and older observers,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 703 (1992).

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (7)

J. Physiol. (London) (1)

R. A. Weale, “Age and the transmittance of the human crystalline lens,”J. Physiol. (London) 395, 577–587 (1988).

Mod. Probl. Ophthalmol. (1)

J. E. Bailey, R. W. Massof, “In search of the physiological neutral point,” Mod. Probl. Ophthalmol. 13, 135–139 (1974).
[PubMed]

Psychol. Rev. (1)

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef] [PubMed]

Sci. Papers Bur. Stand. (1)

I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Sci. Papers Bur. Stand. 17, 231–265 (1921).
[CrossRef]

Vision Res. (12)

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11, 157–160 (1971).
[CrossRef] [PubMed]

Y. Ejima, S. Takahashi, M. Akita, “Achromatic sensation for trichromatic mixture as a function of stimulus intensity,” Vision Res. 26, 1065–1071 (1986).
[CrossRef]

J. Walraven, J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef] [PubMed]

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

H. Hibino, “Red–green and yellow–blue opponent-color responses as a function of retinal eccentricity,” Vision Res. 32, 1955–1964 (1992).
[CrossRef] [PubMed]

F. M. DeMonasterio, “Macular pigmentation and the spectral sensitivity of retinal ganglion cells of macaques,” Vision Res. 18, 1273–1277 (1978).
[CrossRef]

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[CrossRef] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

C. M. Cicerone, A. L. Nagy, J. L. Nerger, “Equilibrium hue judgements of dichromats,” Vision Res. 27, 983–991 (1987).
[CrossRef] [PubMed]

K. Ruddock, “The effect of age upon colour vision—II. Changes with age in light transmission of the ocular media,” Vision Res. 5, 47–58 (1965).
[CrossRef] [PubMed]

Other (7)

O. J. Dunn, V. A. Clark, Applied Statistics: Analysis of Variance and Regression (Wiley, New York, 1974).

C. M. Judd, G. H. McClelland, Data Analysis: A Model-Comparison Approach (Harcourt Brace Jovanovich, San Diego, Calif., 1989).

E. Zrenner, P. Gouras, “Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina,” in Colour Vision, J. D. Mollen, L. T. Sharpe, eds. (Academic, New York, 1983).

W. D. Wright, Researches on Normal and Defective Colour Vision (Mosby, St. Louis, Mo., 1947).

M. Akita, “Cone-interaction in the yellow–blue opponent process,” in Proceedings of Stiles-Wyszecki Memorial Symposium on Color Vision Models, M. Richter, ed. (Muster-Schmidt Verlay, Göttingen, 1987), pp. 161–169.

D. Jameson, L. M. Hurvich, “Essay concerning color constancy,” in Annual Review of Psychology (Annual Reviews, Palo Alto, Calif., 1989), pp. 1–22.
[CrossRef]

J. Walraven, T. Benzschawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Predicted effects of age-related changes in ocular-media density and S-cone sensitivity on an achromatic locus plotted in CIE 1976 u′, v′ chromaticity coordinates. The filled circle represents the stimulus that appears achromatic for a hypothetical observer at 10 years of age. Solid black arrows represent the expected shift in the achromatic point when cancellation mixtures compensate for the change in spectral composition of the stimulus that results from increases in absorption by the ocular media for an 80-year-old subject. Additional age-related changes in the achromatic point expected from selective losses in S cones are shown by dashed arrows. These shifts were calculated on the basis of transformation equations from receptor space to CIE space (Refs. 1 and 19) and sensitivity decreases estimated from two-color increment-threshold data (Refs. 16 and 17). The gray arrows (four topmost arrows at the right) show expected shifts (due to age-related changes in the ocular media from age 10–80 years) in the chromaticity of a mixture of complementary lights matched to a broadband stimulus (filled circle). The wavelengths of the complementary lights for these computations were 400/569, 460/572.5, 480/580.5, and 490/600 nm.

Fig. 2
Fig. 2

Wavelengths of unique blue and unique yellow plotted as a function of age. Solid curves are based on linear-regression equations; dashed curves define 95% confidence intervals of the slopes. The parameters of the least-squares linear regression equations are shown in Table 1.

Fig. 3
Fig. 3

Proportion of blue responses plotted as a function of the troland proportion of unique blue contained in a mixture with 575.5-nm light. The smooth curve is the fitted logistic function. The arrow denotes the 0.5 point on the psychometric function taken as the achromatic point.

Fig. 4
Fig. 4

Troland proportion for the unique-blue component of the mixture that appeared achromatic, plotted as a function of age, for three retinal illuminances. Solid curves are based on linear regression equations; dashed curves define the 95% confidence intervals of the slopes. The parameters of the least-squares linear regression equations are shown in Table 2.

Fig. 5
Fig. 5

Achromatic loci of individual subjects plotted in 1976 CIE uv′ coordinates. The curve through the data points represents the various phases of daylight.30

Fig. 6
Fig. 6

Average achromatic loci for subjects in each age decade plotted in 1976 CIE uv′ coordinates.

Tables (3)

Tables Icon

Table 1 Descriptive Statistics and Parameters of Linear Regression as a Function of Age for Unique Hues

Tables Icon

Table 2 Descriptive Statistics and Parameters of Linear Regression as a Function of Age for Proportion (p) of Short-Wavelength Light (Trolands) in Achromatic Mixture

Tables Icon

Table 3 CIE Chromaticity Coordinates of Achromatic Loci

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

0 = r , g = 0.32 S - 2.8 M + 2.5 L .

Metrics