Abstract

We investigated whether responses from different cone classes are combined before or after the nonlinearity that is responsible for generating nonlinear response components of the flicker electroretinogram (ERG). We measured the nonlinear response of the retina while systematically varying the modulation in the long-wavelength-sensitive and middle-wavelength-sensitive cones by changing the proportions of flickering 633- and 543-nm lights that compose a sum-of-sinusoids temporal waveform. We found that at high temporal frequencies the ERG responses are best accounted for by a model in which the principal retinal nonlinearity is located before the convergence of signals from the two cone classes. At low temporal frequencies the ERG signal is dominated by cone-antagonistic responses. At frequencies of 30 Hz and higher, the flicker ERG and psychophysical flicker photometry give similar estimates of the relative proportions of long- and middle-wavelength-sensitive cones. The ERG photometric null is frequency dependent, whereas the psychophysically determined ratio is much less sensitive to changes in frequency.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. Brown, “The electroretinogram,” Vision Res. 8, 633–677 (1968).
    [CrossRef] [PubMed]
  2. R. W. Rodieck, The Vertebrate Retina (Freeman, New York, 1972).
  3. L. A. Riggs, “Electroretinography,” Vision Res. 26, 1443–1459 (1986).
    [CrossRef] [PubMed]
  4. W. S. Baron, R. M. Boynton, “The primate foveal local electroretinogram: an indicator of photoreceptor activity,” Vision Res. 13, 495–501 (1974).
    [CrossRef]
  5. W. S. Baron, “The foveal local ERG response to transient and steady state flickering stimuli,” Doc. Ophthalmol. Proc. Ser. 13, 293–297 (1977).
  6. D. V. Norren, “Spectral sensitivity of the cones measured by means of electroretinography,” Ophthalmologica 167, 363–366 (1973).
    [CrossRef]
  7. D. V. Norren, P. Padmos, “Dark adaptation of separate cone systems studied with psychophysics and electroretinography,” Vision Res. 14, 677–686 (1974).
    [CrossRef] [PubMed]
  8. J. Neitz, G. H. Jacobs, “Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys,” J. Opt. Soc. Am. A 1, 1175–1180 (1984).
    [CrossRef] [PubMed]
  9. D. V. Norren, P. Padmos, “Cone dark adaptation: the influence of halothane anesthesia,” Invest. Ophthalmol. Vis. Sci. 14, 212–217 (1975).
  10. M. Gur, Y. Zeevi, “Frequency domain analysis of the human electroretinogram,”J. Opt. Soc. Am. 70, 53–59 (1980).
    [CrossRef] [PubMed]
  11. Y. Tsuchida, K. Kawasaki, K. Fujimura, J. H. Jacobson, “Isolation of faster components in the electroretinogram and visually evoked response in man,” Am. J. Ophthalmol. 75, 846–852 (1973).
    [PubMed]
  12. R. F. Miller, J. E. Dowling, “Intracellular responses of the Muller (glial) cells of the mudpuppy retina: their relation to the b-wave of the electroretinogram,” J. Neurophysiol. 3, 323–341 (1970).
  13. P. A. Sieving, R. H. Steinberg, “Contribution from proximal retina to intraretinal pattern ERG: the M-wave,” Invest. Ophthalmol. Vis. Sci. 26, 1642–1647 (1985).
    [PubMed]
  14. A. Troelstra, N. M. J. Schweitzer, “An analysis of the b-wave in the human ERG,” Vision Res. 3, 213–226 (1964).
    [CrossRef]
  15. D. W. Benson, H. Kolder, L. D. Homer, “Nonlinear response of the human corneoretinal to sinusoidal changes in light intensity,” Pfluegers Arch. 295, 361–368 (1967).
    [CrossRef]
  16. G. S. Brindley, G. Westheimer, “How deeply nonlinear is the electroretinogram?”J. Physiol. (London) 196, 78–79 (1968).
  17. D. Reits, H. Spekreijse, “Is there a sequential relation between ERG and VEP?” paper presented at the 21st Symposium of the International Society for Clinical Electrophysiology of Vision, Budapest, 1983.
  18. C. L. Baker, R. F. Hess, “Linear and nonlinear components of human electroretinograms,” J. Neurophysiol. 51, 952–967 (1984).
    [PubMed]
  19. J. V. Odom, D. Reits, N. Burgers, F. C. C. Riemslag, “Flicker electroretinograms: a system analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
    [CrossRef] [PubMed]
  20. S. A. Burns, A. E. Elsner, M. R. Kreitz, “Analysis of nonlinearities in the flicker ERG,” Optom. Vis. Sci. 69, 95–105 (1992).
    [CrossRef] [PubMed]
  21. G. J. Burton, “Evidence for non-linear response processes in the human visual system from measurements on the threshold of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
    [CrossRef] [PubMed]
  22. H. Spekreijse, H. Oosting, “Linearizing: a method for analyzing and synthesizing nonlinear systems,” Kybernetic 7, 22–31 (1970).
    [CrossRef]
  23. H. Spekreijse, D. Reits, “Sequential analysis of the visual evoked potential system in man: nonlinear analysis of a sandwich system,” Ann. N.Y. Acad. Sci. 388, 72–97 (1982).
    [CrossRef]
  24. W. Makous, “Partitioning visual processes,” in Frontiers of Visual Science: Proceedings of the 1985 Symposium, Committee on Vision, Commission on Behavioral and Social Sciences and Education, National Research Council (National Academy Press, Washington, D.C., 1987), pp. 1–23.
  25. D. Regan, Human Brain Electrophysiology: Evoked Potential and Evoked Magnetic Fields in Science and Medicine (Elsevier, New York, 1989), pp. 1–156.
  26. D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–364 (1992).
    [CrossRef] [PubMed]
  27. H. M. Sakai, K. I. Naka, M. J. Korenberg, “White noise analysis in visual neuroscience,” Visual Neurosci. 1, 287–296 (1988).
    [CrossRef]
  28. J. D. Victor, R. M. Shapley, B. W. Knight, “Nonlinear analysis of cat retinal ganglion cells in the frequency domain,” Proc. Natl. Acad. Sci. USA 74, 3068–3072 (1977).
    [CrossRef] [PubMed]
  29. O. Katsumi, E. Peli, Y. Oguchi, T. Kawara, “Effect of contrast on fusional visual evoked potential (VEP): a model and experimental results,” Am. J. Optom. Physiol. Opt. 62, 233–239 (1985).
    [CrossRef] [PubMed]
  30. L. W. Baitch, D. M. Levi, “Evidence for nonlinear binocular interactions in human visual cortex,” Vision Res. 28, 1139–1143 (1988).
    [CrossRef] [PubMed]
  31. M. P. Regan, D. Regan, “A frequency domain technique for characterizing nonlinearities in biological systems,”J. Theor. Biol. 133, 293–317 (1988).
    [CrossRef]
  32. P. Howarth, I. L. Bailey, S. M. Berman, G. Heron, D. S. Greenhouse, “Location of nonlinear processes within the pupillary pathways,” Appl. Opt. 30, 2100–2105 (1991).
    [CrossRef] [PubMed]
  33. S. Klein, “Optimizing the estimation of nonlinear kernels,” in Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks,” R. B. Pinter, B. N. Nabet, eds. (CRC, Boca Raton, Fla., 1992).
  34. G. Palm, “On representation and approximation of nonlinear systems,” Biol. Cybern. 34, 49–52 (1979).
    [CrossRef]
  35. S. A. Burns, M. R. Kreitz, A. E. Elsner, “Computer-controlled two-color laser-based optical stimulator for vision research,” Appl. Opt. 30, 2063–2065 (1991).
    [CrossRef] [PubMed]
  36. W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
    [CrossRef] [PubMed]
  37. R. M. Boynton, “Stray light and the human electroretinogram,”J. Opt. Soc. Am. 43, 442–449 (1953).
    [CrossRef] [PubMed]
  38. R. Jones, P. E. King-Smith, D. H. Loffing, F. L. Gaynier, “Stray light contribution to the focal electroretinogram (ERG),” Clin. Vis. Sci. 1, 152–160 (1987).
  39. V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
    [CrossRef] [PubMed]
  40. W. H. Swanson, J. Pokorny, V. C. Smith, “Effects of chromatic adaptation on phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 5, 1976–1983 (1988).
    [CrossRef] [PubMed]
  41. R. D. Hamer, C. W. Tyler, “Analysis of visual modulation sensitivity. V. Faster visual response for G- than for R-cone pathway?” J. Opt. Soc. Am. A 9, 1889–1904 (1992).
    [CrossRef] [PubMed]
  42. B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
    [PubMed]
  43. W. J. Donovan, W. S. Baron, “Identification of the R-G cone difference signal in the corneal electroretinogram,”J. Opt. Soc. Am. 72, 1014–1020 (1982).
    [CrossRef] [PubMed]
  44. G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).
  45. J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 5, 879–885 (1992).
    [CrossRef]

1992 (5)

J. V. Odom, D. Reits, N. Burgers, F. C. C. Riemslag, “Flicker electroretinograms: a system analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, M. R. Kreitz, “Analysis of nonlinearities in the flicker ERG,” Optom. Vis. Sci. 69, 95–105 (1992).
[CrossRef] [PubMed]

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–364 (1992).
[CrossRef] [PubMed]

R. D. Hamer, C. W. Tyler, “Analysis of visual modulation sensitivity. V. Faster visual response for G- than for R-cone pathway?” J. Opt. Soc. Am. A 9, 1889–1904 (1992).
[CrossRef] [PubMed]

J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 5, 879–885 (1992).
[CrossRef]

1991 (2)

1989 (1)

B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
[PubMed]

1988 (4)

W. H. Swanson, J. Pokorny, V. C. Smith, “Effects of chromatic adaptation on phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 5, 1976–1983 (1988).
[CrossRef] [PubMed]

H. M. Sakai, K. I. Naka, M. J. Korenberg, “White noise analysis in visual neuroscience,” Visual Neurosci. 1, 287–296 (1988).
[CrossRef]

L. W. Baitch, D. M. Levi, “Evidence for nonlinear binocular interactions in human visual cortex,” Vision Res. 28, 1139–1143 (1988).
[CrossRef] [PubMed]

M. P. Regan, D. Regan, “A frequency domain technique for characterizing nonlinearities in biological systems,”J. Theor. Biol. 133, 293–317 (1988).
[CrossRef]

1987 (2)

R. Jones, P. E. King-Smith, D. H. Loffing, F. L. Gaynier, “Stray light contribution to the focal electroretinogram (ERG),” Clin. Vis. Sci. 1, 152–160 (1987).

W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
[CrossRef] [PubMed]

1986 (1)

L. A. Riggs, “Electroretinography,” Vision Res. 26, 1443–1459 (1986).
[CrossRef] [PubMed]

1985 (2)

P. A. Sieving, R. H. Steinberg, “Contribution from proximal retina to intraretinal pattern ERG: the M-wave,” Invest. Ophthalmol. Vis. Sci. 26, 1642–1647 (1985).
[PubMed]

O. Katsumi, E. Peli, Y. Oguchi, T. Kawara, “Effect of contrast on fusional visual evoked potential (VEP): a model and experimental results,” Am. J. Optom. Physiol. Opt. 62, 233–239 (1985).
[CrossRef] [PubMed]

1984 (2)

C. L. Baker, R. F. Hess, “Linear and nonlinear components of human electroretinograms,” J. Neurophysiol. 51, 952–967 (1984).
[PubMed]

J. Neitz, G. H. Jacobs, “Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys,” J. Opt. Soc. Am. A 1, 1175–1180 (1984).
[CrossRef] [PubMed]

1982 (2)

H. Spekreijse, D. Reits, “Sequential analysis of the visual evoked potential system in man: nonlinear analysis of a sandwich system,” Ann. N.Y. Acad. Sci. 388, 72–97 (1982).
[CrossRef]

W. J. Donovan, W. S. Baron, “Identification of the R-G cone difference signal in the corneal electroretinogram,”J. Opt. Soc. Am. 72, 1014–1020 (1982).
[CrossRef] [PubMed]

1980 (1)

1979 (1)

G. Palm, “On representation and approximation of nonlinear systems,” Biol. Cybern. 34, 49–52 (1979).
[CrossRef]

1977 (2)

J. D. Victor, R. M. Shapley, B. W. Knight, “Nonlinear analysis of cat retinal ganglion cells in the frequency domain,” Proc. Natl. Acad. Sci. USA 74, 3068–3072 (1977).
[CrossRef] [PubMed]

W. S. Baron, “The foveal local ERG response to transient and steady state flickering stimuli,” Doc. Ophthalmol. Proc. Ser. 13, 293–297 (1977).

1975 (1)

D. V. Norren, P. Padmos, “Cone dark adaptation: the influence of halothane anesthesia,” Invest. Ophthalmol. Vis. Sci. 14, 212–217 (1975).

1974 (2)

D. V. Norren, P. Padmos, “Dark adaptation of separate cone systems studied with psychophysics and electroretinography,” Vision Res. 14, 677–686 (1974).
[CrossRef] [PubMed]

W. S. Baron, R. M. Boynton, “The primate foveal local electroretinogram: an indicator of photoreceptor activity,” Vision Res. 13, 495–501 (1974).
[CrossRef]

1973 (3)

D. V. Norren, “Spectral sensitivity of the cones measured by means of electroretinography,” Ophthalmologica 167, 363–366 (1973).
[CrossRef]

Y. Tsuchida, K. Kawasaki, K. Fujimura, J. H. Jacobson, “Isolation of faster components in the electroretinogram and visually evoked response in man,” Am. J. Ophthalmol. 75, 846–852 (1973).
[PubMed]

G. J. Burton, “Evidence for non-linear response processes in the human visual system from measurements on the threshold of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
[CrossRef] [PubMed]

1972 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

1970 (2)

H. Spekreijse, H. Oosting, “Linearizing: a method for analyzing and synthesizing nonlinear systems,” Kybernetic 7, 22–31 (1970).
[CrossRef]

R. F. Miller, J. E. Dowling, “Intracellular responses of the Muller (glial) cells of the mudpuppy retina: their relation to the b-wave of the electroretinogram,” J. Neurophysiol. 3, 323–341 (1970).

1968 (2)

K. T. Brown, “The electroretinogram,” Vision Res. 8, 633–677 (1968).
[CrossRef] [PubMed]

G. S. Brindley, G. Westheimer, “How deeply nonlinear is the electroretinogram?”J. Physiol. (London) 196, 78–79 (1968).

1967 (1)

D. W. Benson, H. Kolder, L. D. Homer, “Nonlinear response of the human corneoretinal to sinusoidal changes in light intensity,” Pfluegers Arch. 295, 361–368 (1967).
[CrossRef]

1964 (1)

A. Troelstra, N. M. J. Schweitzer, “An analysis of the b-wave in the human ERG,” Vision Res. 3, 213–226 (1964).
[CrossRef]

1953 (1)

Bailey, I. L.

Baitch, L. W.

L. W. Baitch, D. M. Levi, “Evidence for nonlinear binocular interactions in human visual cortex,” Vision Res. 28, 1139–1143 (1988).
[CrossRef] [PubMed]

Baker, C. L.

C. L. Baker, R. F. Hess, “Linear and nonlinear components of human electroretinograms,” J. Neurophysiol. 51, 952–967 (1984).
[PubMed]

Baron, W. S.

W. J. Donovan, W. S. Baron, “Identification of the R-G cone difference signal in the corneal electroretinogram,”J. Opt. Soc. Am. 72, 1014–1020 (1982).
[CrossRef] [PubMed]

W. S. Baron, “The foveal local ERG response to transient and steady state flickering stimuli,” Doc. Ophthalmol. Proc. Ser. 13, 293–297 (1977).

W. S. Baron, R. M. Boynton, “The primate foveal local electroretinogram: an indicator of photoreceptor activity,” Vision Res. 13, 495–501 (1974).
[CrossRef]

Benson, D. W.

D. W. Benson, H. Kolder, L. D. Homer, “Nonlinear response of the human corneoretinal to sinusoidal changes in light intensity,” Pfluegers Arch. 295, 361–368 (1967).
[CrossRef]

Berman, S. M.

Boynton, R. M.

W. S. Baron, R. M. Boynton, “The primate foveal local electroretinogram: an indicator of photoreceptor activity,” Vision Res. 13, 495–501 (1974).
[CrossRef]

R. M. Boynton, “Stray light and the human electroretinogram,”J. Opt. Soc. Am. 43, 442–449 (1953).
[CrossRef] [PubMed]

Brindley, G. S.

G. S. Brindley, G. Westheimer, “How deeply nonlinear is the electroretinogram?”J. Physiol. (London) 196, 78–79 (1968).

Brown, K. T.

K. T. Brown, “The electroretinogram,” Vision Res. 8, 633–677 (1968).
[CrossRef] [PubMed]

Burgers, N.

J. V. Odom, D. Reits, N. Burgers, F. C. C. Riemslag, “Flicker electroretinograms: a system analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef] [PubMed]

Burns, S. A.

Burton, G. J.

G. J. Burton, “Evidence for non-linear response processes in the human visual system from measurements on the threshold of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
[CrossRef] [PubMed]

Cicerone, C. M.

J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 5, 879–885 (1992).
[CrossRef]

Donovan, W. J.

Dowling, J. E.

R. F. Miller, J. E. Dowling, “Intracellular responses of the Muller (glial) cells of the mudpuppy retina: their relation to the b-wave of the electroretinogram,” J. Neurophysiol. 3, 323–341 (1970).

Elsner, A. E.

Fujimura, K.

Y. Tsuchida, K. Kawasaki, K. Fujimura, J. H. Jacobson, “Isolation of faster components in the electroretinogram and visually evoked response in man,” Am. J. Ophthalmol. 75, 846–852 (1973).
[PubMed]

Gaynier, F. L.

R. Jones, P. E. King-Smith, D. H. Loffing, F. L. Gaynier, “Stray light contribution to the focal electroretinogram (ERG),” Clin. Vis. Sci. 1, 152–160 (1987).

Greenhouse, D. S.

Gur, M.

Hamer, R. D.

Heron, G.

Hess, R. F.

C. L. Baker, R. F. Hess, “Linear and nonlinear components of human electroretinograms,” J. Neurophysiol. 51, 952–967 (1984).
[PubMed]

Homer, L. D.

D. W. Benson, H. Kolder, L. D. Homer, “Nonlinear response of the human corneoretinal to sinusoidal changes in light intensity,” Pfluegers Arch. 295, 361–368 (1967).
[CrossRef]

Howarth, P.

Jacobs, G. H.

Jacobson, J. H.

Y. Tsuchida, K. Kawasaki, K. Fujimura, J. H. Jacobson, “Isolation of faster components in the electroretinogram and visually evoked response in man,” Am. J. Ophthalmol. 75, 846–852 (1973).
[PubMed]

Jones, R.

R. Jones, P. E. King-Smith, D. H. Loffing, F. L. Gaynier, “Stray light contribution to the focal electroretinogram (ERG),” Clin. Vis. Sci. 1, 152–160 (1987).

Katsumi, O.

O. Katsumi, E. Peli, Y. Oguchi, T. Kawara, “Effect of contrast on fusional visual evoked potential (VEP): a model and experimental results,” Am. J. Optom. Physiol. Opt. 62, 233–239 (1985).
[CrossRef] [PubMed]

Kawara, T.

O. Katsumi, E. Peli, Y. Oguchi, T. Kawara, “Effect of contrast on fusional visual evoked potential (VEP): a model and experimental results,” Am. J. Optom. Physiol. Opt. 62, 233–239 (1985).
[CrossRef] [PubMed]

Kawasaki, K.

Y. Tsuchida, K. Kawasaki, K. Fujimura, J. H. Jacobson, “Isolation of faster components in the electroretinogram and visually evoked response in man,” Am. J. Ophthalmol. 75, 846–852 (1973).
[PubMed]

King-Smith, P. E.

R. Jones, P. E. King-Smith, D. H. Loffing, F. L. Gaynier, “Stray light contribution to the focal electroretinogram (ERG),” Clin. Vis. Sci. 1, 152–160 (1987).

Klein, S.

S. Klein, “Optimizing the estimation of nonlinear kernels,” in Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks,” R. B. Pinter, B. N. Nabet, eds. (CRC, Boca Raton, Fla., 1992).

Knight, B. W.

J. D. Victor, R. M. Shapley, B. W. Knight, “Nonlinear analysis of cat retinal ganglion cells in the frequency domain,” Proc. Natl. Acad. Sci. USA 74, 3068–3072 (1977).
[CrossRef] [PubMed]

Kolder, H.

D. W. Benson, H. Kolder, L. D. Homer, “Nonlinear response of the human corneoretinal to sinusoidal changes in light intensity,” Pfluegers Arch. 295, 361–368 (1967).
[CrossRef]

Korenberg, M. J.

H. M. Sakai, K. I. Naka, M. J. Korenberg, “White noise analysis in visual neuroscience,” Visual Neurosci. 1, 287–296 (1988).
[CrossRef]

Kreitz, M. R.

Lee, B. B.

B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
[PubMed]

Levi, D. M.

L. W. Baitch, D. M. Levi, “Evidence for nonlinear binocular interactions in human visual cortex,” Vision Res. 28, 1139–1143 (1988).
[CrossRef] [PubMed]

Loffing, D. H.

R. Jones, P. E. King-Smith, D. H. Loffing, F. L. Gaynier, “Stray light contribution to the focal electroretinogram (ERG),” Clin. Vis. Sci. 1, 152–160 (1987).

MacLeod, D. I. A.

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–364 (1992).
[CrossRef] [PubMed]

Makous, W.

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–364 (1992).
[CrossRef] [PubMed]

W. Makous, “Partitioning visual processes,” in Frontiers of Visual Science: Proceedings of the 1985 Symposium, Committee on Vision, Commission on Behavioral and Social Sciences and Education, National Research Council (National Academy Press, Washington, D.C., 1987), pp. 1–23.

Martin, P. R.

B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
[PubMed]

Miller, R. F.

R. F. Miller, J. E. Dowling, “Intracellular responses of the Muller (glial) cells of the mudpuppy retina: their relation to the b-wave of the electroretinogram,” J. Neurophysiol. 3, 323–341 (1970).

Naka, K. I.

H. M. Sakai, K. I. Naka, M. J. Korenberg, “White noise analysis in visual neuroscience,” Visual Neurosci. 1, 287–296 (1988).
[CrossRef]

Neitz, J.

Nerger, J. L.

J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 5, 879–885 (1992).
[CrossRef]

Norren, D. V.

D. V. Norren, P. Padmos, “Cone dark adaptation: the influence of halothane anesthesia,” Invest. Ophthalmol. Vis. Sci. 14, 212–217 (1975).

D. V. Norren, P. Padmos, “Dark adaptation of separate cone systems studied with psychophysics and electroretinography,” Vision Res. 14, 677–686 (1974).
[CrossRef] [PubMed]

D. V. Norren, “Spectral sensitivity of the cones measured by means of electroretinography,” Ophthalmologica 167, 363–366 (1973).
[CrossRef]

Odom, J. V.

J. V. Odom, D. Reits, N. Burgers, F. C. C. Riemslag, “Flicker electroretinograms: a system analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef] [PubMed]

Oguchi, Y.

O. Katsumi, E. Peli, Y. Oguchi, T. Kawara, “Effect of contrast on fusional visual evoked potential (VEP): a model and experimental results,” Am. J. Optom. Physiol. Opt. 62, 233–239 (1985).
[CrossRef] [PubMed]

Oosting, H.

H. Spekreijse, H. Oosting, “Linearizing: a method for analyzing and synthesizing nonlinear systems,” Kybernetic 7, 22–31 (1970).
[CrossRef]

Padmos, P.

D. V. Norren, P. Padmos, “Cone dark adaptation: the influence of halothane anesthesia,” Invest. Ophthalmol. Vis. Sci. 14, 212–217 (1975).

D. V. Norren, P. Padmos, “Dark adaptation of separate cone systems studied with psychophysics and electroretinography,” Vision Res. 14, 677–686 (1974).
[CrossRef] [PubMed]

Palm, G.

G. Palm, “On representation and approximation of nonlinear systems,” Biol. Cybern. 34, 49–52 (1979).
[CrossRef]

Peli, E.

O. Katsumi, E. Peli, Y. Oguchi, T. Kawara, “Effect of contrast on fusional visual evoked potential (VEP): a model and experimental results,” Am. J. Optom. Physiol. Opt. 62, 233–239 (1985).
[CrossRef] [PubMed]

Pokorny, J.

Regan, D.

M. P. Regan, D. Regan, “A frequency domain technique for characterizing nonlinearities in biological systems,”J. Theor. Biol. 133, 293–317 (1988).
[CrossRef]

D. Regan, Human Brain Electrophysiology: Evoked Potential and Evoked Magnetic Fields in Science and Medicine (Elsevier, New York, 1989), pp. 1–156.

Regan, M. P.

M. P. Regan, D. Regan, “A frequency domain technique for characterizing nonlinearities in biological systems,”J. Theor. Biol. 133, 293–317 (1988).
[CrossRef]

Reits, D.

J. V. Odom, D. Reits, N. Burgers, F. C. C. Riemslag, “Flicker electroretinograms: a system analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef] [PubMed]

H. Spekreijse, D. Reits, “Sequential analysis of the visual evoked potential system in man: nonlinear analysis of a sandwich system,” Ann. N.Y. Acad. Sci. 388, 72–97 (1982).
[CrossRef]

D. Reits, H. Spekreijse, “Is there a sequential relation between ERG and VEP?” paper presented at the 21st Symposium of the International Society for Clinical Electrophysiology of Vision, Budapest, 1983.

Riemslag, F. C. C.

J. V. Odom, D. Reits, N. Burgers, F. C. C. Riemslag, “Flicker electroretinograms: a system analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef] [PubMed]

Riggs, L. A.

L. A. Riggs, “Electroretinography,” Vision Res. 26, 1443–1459 (1986).
[CrossRef] [PubMed]

Rodieck, R. W.

R. W. Rodieck, The Vertebrate Retina (Freeman, New York, 1972).

Sakai, H. M.

H. M. Sakai, K. I. Naka, M. J. Korenberg, “White noise analysis in visual neuroscience,” Visual Neurosci. 1, 287–296 (1988).
[CrossRef]

Schweitzer, N. M. J.

A. Troelstra, N. M. J. Schweitzer, “An analysis of the b-wave in the human ERG,” Vision Res. 3, 213–226 (1964).
[CrossRef]

Shapley, R. M.

J. D. Victor, R. M. Shapley, B. W. Knight, “Nonlinear analysis of cat retinal ganglion cells in the frequency domain,” Proc. Natl. Acad. Sci. USA 74, 3068–3072 (1977).
[CrossRef] [PubMed]

Sieving, P. A.

P. A. Sieving, R. H. Steinberg, “Contribution from proximal retina to intraretinal pattern ERG: the M-wave,” Invest. Ophthalmol. Vis. Sci. 26, 1642–1647 (1985).
[PubMed]

Smith, V. C.

Spekreijse, H.

H. Spekreijse, D. Reits, “Sequential analysis of the visual evoked potential system in man: nonlinear analysis of a sandwich system,” Ann. N.Y. Acad. Sci. 388, 72–97 (1982).
[CrossRef]

H. Spekreijse, H. Oosting, “Linearizing: a method for analyzing and synthesizing nonlinear systems,” Kybernetic 7, 22–31 (1970).
[CrossRef]

D. Reits, H. Spekreijse, “Is there a sequential relation between ERG and VEP?” paper presented at the 21st Symposium of the International Society for Clinical Electrophysiology of Vision, Budapest, 1983.

Steinberg, R. H.

P. A. Sieving, R. H. Steinberg, “Contribution from proximal retina to intraretinal pattern ERG: the M-wave,” Invest. Ophthalmol. Vis. Sci. 26, 1642–1647 (1985).
[PubMed]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Swanson, W. H.

Troelstra, A.

A. Troelstra, N. M. J. Schweitzer, “An analysis of the b-wave in the human ERG,” Vision Res. 3, 213–226 (1964).
[CrossRef]

Tsuchida, Y.

Y. Tsuchida, K. Kawasaki, K. Fujimura, J. H. Jacobson, “Isolation of faster components in the electroretinogram and visually evoked response in man,” Am. J. Ophthalmol. 75, 846–852 (1973).
[PubMed]

Tyler, C. W.

Ueno, T.

Valberg, A.

B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
[PubMed]

Victor, J. D.

J. D. Victor, R. M. Shapley, B. W. Knight, “Nonlinear analysis of cat retinal ganglion cells in the frequency domain,” Proc. Natl. Acad. Sci. USA 74, 3068–3072 (1977).
[CrossRef] [PubMed]

Westheimer, G.

G. S. Brindley, G. Westheimer, “How deeply nonlinear is the electroretinogram?”J. Physiol. (London) 196, 78–79 (1968).

Williams, D. R.

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–364 (1992).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Zeevi, Y.

Am. J. Ophthalmol. (1)

Y. Tsuchida, K. Kawasaki, K. Fujimura, J. H. Jacobson, “Isolation of faster components in the electroretinogram and visually evoked response in man,” Am. J. Ophthalmol. 75, 846–852 (1973).
[PubMed]

Am. J. Optom. Physiol. Opt. (1)

O. Katsumi, E. Peli, Y. Oguchi, T. Kawara, “Effect of contrast on fusional visual evoked potential (VEP): a model and experimental results,” Am. J. Optom. Physiol. Opt. 62, 233–239 (1985).
[CrossRef] [PubMed]

Ann. N.Y. Acad. Sci. (1)

H. Spekreijse, D. Reits, “Sequential analysis of the visual evoked potential system in man: nonlinear analysis of a sandwich system,” Ann. N.Y. Acad. Sci. 388, 72–97 (1982).
[CrossRef]

Appl. Opt. (2)

Biol. Cybern. (1)

G. Palm, “On representation and approximation of nonlinear systems,” Biol. Cybern. 34, 49–52 (1979).
[CrossRef]

Clin. Vis. Sci. (1)

R. Jones, P. E. King-Smith, D. H. Loffing, F. L. Gaynier, “Stray light contribution to the focal electroretinogram (ERG),” Clin. Vis. Sci. 1, 152–160 (1987).

Doc. Ophthalmol. Proc. Ser. (1)

W. S. Baron, “The foveal local ERG response to transient and steady state flickering stimuli,” Doc. Ophthalmol. Proc. Ser. 13, 293–297 (1977).

Invest. Ophthalmol. Vis. Sci. (2)

D. V. Norren, P. Padmos, “Cone dark adaptation: the influence of halothane anesthesia,” Invest. Ophthalmol. Vis. Sci. 14, 212–217 (1975).

P. A. Sieving, R. H. Steinberg, “Contribution from proximal retina to intraretinal pattern ERG: the M-wave,” Invest. Ophthalmol. Vis. Sci. 26, 1642–1647 (1985).
[PubMed]

J. Neurophysiol. (2)

R. F. Miller, J. E. Dowling, “Intracellular responses of the Muller (glial) cells of the mudpuppy retina: their relation to the b-wave of the electroretinogram,” J. Neurophysiol. 3, 323–341 (1970).

C. L. Baker, R. F. Hess, “Linear and nonlinear components of human electroretinograms,” J. Neurophysiol. 51, 952–967 (1984).
[PubMed]

J. Neurosci. (1)

B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
[PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (4)

J. Physiol. (London) (1)

G. S. Brindley, G. Westheimer, “How deeply nonlinear is the electroretinogram?”J. Physiol. (London) 196, 78–79 (1968).

J. Theor. Biol. (1)

M. P. Regan, D. Regan, “A frequency domain technique for characterizing nonlinearities in biological systems,”J. Theor. Biol. 133, 293–317 (1988).
[CrossRef]

Kybernetic (1)

H. Spekreijse, H. Oosting, “Linearizing: a method for analyzing and synthesizing nonlinear systems,” Kybernetic 7, 22–31 (1970).
[CrossRef]

Ophthalmologica (1)

D. V. Norren, “Spectral sensitivity of the cones measured by means of electroretinography,” Ophthalmologica 167, 363–366 (1973).
[CrossRef]

Optom. Vis. Sci. (2)

J. V. Odom, D. Reits, N. Burgers, F. C. C. Riemslag, “Flicker electroretinograms: a system analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, M. R. Kreitz, “Analysis of nonlinearities in the flicker ERG,” Optom. Vis. Sci. 69, 95–105 (1992).
[CrossRef] [PubMed]

Pfluegers Arch. (1)

D. W. Benson, H. Kolder, L. D. Homer, “Nonlinear response of the human corneoretinal to sinusoidal changes in light intensity,” Pfluegers Arch. 295, 361–368 (1967).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

J. D. Victor, R. M. Shapley, B. W. Knight, “Nonlinear analysis of cat retinal ganglion cells in the frequency domain,” Proc. Natl. Acad. Sci. USA 74, 3068–3072 (1977).
[CrossRef] [PubMed]

Vision Res. (10)

L. W. Baitch, D. M. Levi, “Evidence for nonlinear binocular interactions in human visual cortex,” Vision Res. 28, 1139–1143 (1988).
[CrossRef] [PubMed]

G. J. Burton, “Evidence for non-linear response processes in the human visual system from measurements on the threshold of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
[CrossRef] [PubMed]

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–364 (1992).
[CrossRef] [PubMed]

A. Troelstra, N. M. J. Schweitzer, “An analysis of the b-wave in the human ERG,” Vision Res. 3, 213–226 (1964).
[CrossRef]

D. V. Norren, P. Padmos, “Dark adaptation of separate cone systems studied with psychophysics and electroretinography,” Vision Res. 14, 677–686 (1974).
[CrossRef] [PubMed]

K. T. Brown, “The electroretinogram,” Vision Res. 8, 633–677 (1968).
[CrossRef] [PubMed]

L. A. Riggs, “Electroretinography,” Vision Res. 26, 1443–1459 (1986).
[CrossRef] [PubMed]

W. S. Baron, R. M. Boynton, “The primate foveal local electroretinogram: an indicator of photoreceptor activity,” Vision Res. 13, 495–501 (1974).
[CrossRef]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 5, 879–885 (1992).
[CrossRef]

Visual Neurosci. (1)

H. M. Sakai, K. I. Naka, M. J. Korenberg, “White noise analysis in visual neuroscience,” Visual Neurosci. 1, 287–296 (1988).
[CrossRef]

Other (6)

W. Makous, “Partitioning visual processes,” in Frontiers of Visual Science: Proceedings of the 1985 Symposium, Committee on Vision, Commission on Behavioral and Social Sciences and Education, National Research Council (National Academy Press, Washington, D.C., 1987), pp. 1–23.

D. Regan, Human Brain Electrophysiology: Evoked Potential and Evoked Magnetic Fields in Science and Medicine (Elsevier, New York, 1989), pp. 1–156.

S. Klein, “Optimizing the estimation of nonlinear kernels,” in Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks,” R. B. Pinter, B. N. Nabet, eds. (CRC, Boca Raton, Fla., 1992).

R. W. Rodieck, The Vertebrate Retina (Freeman, New York, 1972).

D. Reits, H. Spekreijse, “Is there a sequential relation between ERG and VEP?” paper presented at the 21st Symposium of the International Society for Clinical Electrophysiology of Vision, Budapest, 1983.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Predictions of ERG modeling. Top left: Relation between the proportion of red in the flickering stimuli and the modulation of the cone absorptions. Going from left to right, the modulation of the green stimulus is linearly decreasing and that of the red stimulus is linearly increasing. Also shown is the response of a system that linearly sums the cone absorptions. Top right: predictions for a model incorporating linear combinations of cone signals and a later nonlinearity. A compressive nonlinearity was used. Both fundamental responses and nonlinear-response components drop to zero at the location of the photometric null. Bottom left: predictions for a model in which the output of each cone passes through a compressive nonlinearity before combination. Whereas responses at the stimulus frequencies drop to zero, nonlinear-response components show only a shallow minimum. Bottom right: predictions for a model in which the output responses of each cone are rectified and are then summed. The nonlinear responses in the regions where both cones are in phase have a shallow slope, but there is no minimum at the photometric null. All models treat the frequencies uniformly and do not incorporate phase shifts between LWS and MWS cones. Models incorporating frequency-dependent phase shifts and phase shifts between LWS and MWS cones produce qualitatively similar results but with quantitative differences related to the degree of cancellation.

Fig. 2
Fig. 2

Amplitude spectrum for an ERG response to a sum of a 17- and a 26-Hz sine wave (top) and a sum of a 44- and a 53-Hz sine wave (bottom). The response components are labeled. Note that nonlinear-response components are easily recorded.

Fig. 3
Fig. 3

Amplitude of the fundamental and beat responses as a function of the proportion of red for a single session in which the 17,26 sum-of-sinusoids stimulus was used on subject MK. The proportion of red is the modulation of the red stimulus. In all cases the modulation of the green is 1 minus the modulation of the red stimuli

Fig. 4
Fig. 4

Response amplitudes for two separate sessions, obtained 3 weeks apart, in which the 17,26 sum-of-sinusoids stimulus was used on subject SB. Symbols are as in Fig. 3, with the addition of the second-harmonic-response components. Points with estimated signal-to-noise ratios of <3.0 are not plotted.

Fig. 5
Fig. 5

Average responses for all subjects for all conditions in experiment 1. The top panels show the amplitudes for the fundamental (left) and beat (right) responses. The bottom panels show the response phase. The amplitude and the phase of the fundamental-response components (bottom left) have been shifted vertically for clarity. Fundamental responses have been plotted for stimulus frequencies of 17 Hz and greater. At lower frequencies there was no consistent null, and individual differences precluded averaging.

Fig. 6
Fig. 6

Effect of the added blue field on the amplitude of the ERG response to sinusoidal stimuli. The left-hand panel shows that the added blue decreased the amplitude of both the fundamental and the second-harmonic responses to 5-Hz flicker. The middle panel shows that the response to 14-Hz flicker is minimally affected by the blue field. The right-hand panel shows the responses to changing the phase of the red light relative to the green light at a proportion of red of 0.5. Data points with a ratio of signal-plus-noise to noise of <3.0 are not plotted.

Fig. 7
Fig. 7

Effect of phase on the flicker ERG. The top panel shows that the nonlinear-response components elicited by a sum of 5- and 14-Hz sine waves increase sharply when the red and green stimuli are out of phase. The bottom panel compares the amplitude of the 9-Hz beat elicited by a 5,14 beat and a 29,38 beat as a function of the phases of the red and green stimuli. Data points with a ratio of signal-plus-noise to noise of <3.0 are not plotted.

Fig. 8
Fig. 8

Comparison of psychophysical-modulation sensitivity and ERG-fundamental-response amplitude. The top panel compares data obtained with each technique as a function of the proportion of red in a 29-Hz stimulus for subject MK. The symbols represent either the amplitude of the ERG (triangles) or the psychophysical sensitivity (diamonds). The solid curves are drawn to go through the data, and the minimum is taken as the photometric match as determined by that technique. The bottom panel shows the difference between the psychophysical and the ERG-determined matches at 17, 29, and 44 Hz for all three subjects.

Fig. 9
Fig. 9

Comparison of psychophysical-modulation thresholds (top) and ERG-fundamental-response amplitudes (bottom) for subject YC. Responses have been shifted vertically for clarity.

Metrics