Abstract

Under some conditions, direction-of-motion thresholds are elevated with respect to detection thresholds for isoluminant chromatic stimuli. In the present study we investigated the effect of small luminance mismatches on ratios of direction-of-motion thresholds to detection thresholds (M/D ratios). The stimuli were 2 deg × 2 deg patches of a moving 1-cycle/deg, 2.75-deg/s sinusoidal grating, modulated spatially in luminance, chromaticity, or both. M/D ratios were close to 1 except when luminance modulation was <1%, defined with respect to the individual subject’s isoluminance point; in this range M/D ratios varied from 1.5 to 4.4. Sets of thresholds for both detection and motion tasks conformed approximately to ellipses. Thus, although motion processing shows a differential loss of sensitivity at isoluminance, similar summation rules appear to apply to the combination of luminance and chromatic signals for both tasks.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
    [CrossRef] [PubMed]
  2. K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
    [CrossRef] [PubMed]
  3. V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
    [CrossRef]
  4. J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Color Deficiencies VI, G. Verriest, ed., Doc. Ophthalmol. Proc. Ser.33 (Junk, The Hague, 1982), pp. 61–66.
  5. J. D. Moreland, D. T. Todd, “Motion photometry and the spectral, sensitivity of colour defectives,” Normal and Pathologic Colour Vision, E. Marre, M. Tost, H. J. Zenker, eds. (Martin Luther Universitat, Halle, Germany, 1987), pp. 39–42.
  6. D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
    [CrossRef] [PubMed]
  7. D. Y. Teller, D. T. Lindsey, “Motion at isoluminance: motion dead zones in three-dimensional color space,” J. Opt. Soc. Am. A 10, 1324–1331 (1993).
    [CrossRef] [PubMed]
  8. P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
    [CrossRef] [PubMed]
  9. J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,”J. Physiol. (London) 413, 563–593 (1989).
  10. K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).
  11. C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Visual Sci. 31, 240 (1990).
  12. P. Cavanagh, “The contribution of colour to motion,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1990), pp. 151–164.
  13. D. T. Lindsey, “Are there fundamental losses of visual function at isoluminance?” in Annual Meeting, Vol. 15 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 135.
  14. D. Y. Teller, D. T. Lindsey, “Infant color vision: OKN techniques and null plane analysis,” in Infant Vision: Basic and Clinical Research, K. Simons, ed. (Oxford U. Press, New York, 1993).
  15. A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–348 (1980).
    [CrossRef] [PubMed]
  16. M. Green, “Contrast detection and direction discrimination of drifting gratings,” Vision Res. 23, 281–289 (1983).
    [CrossRef] [PubMed]
  17. N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
    [CrossRef]
  18. J. P. Thomas, “Detection and identification: how are they related?” J. Opt. Soc. Am. A 2, 1457–1467 (1985).
    [CrossRef] [PubMed]
  19. D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in CIE Proceedings (Bureau Central CIE, Paris, 1951).
  20. J. Pokorny, V. C. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 8-1–8-51.
  21. S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).
  22. P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
    [CrossRef] [PubMed]
  23. A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
    [CrossRef] [PubMed]
  24. A. B. Poirson, B. A. Wandell, “Task-dependent color discrimination,” J. Opt. Soc. Am. A 7, 776–782 (1990).
    [CrossRef] [PubMed]
  25. W. R. J. Brown, D. L. MacAdam, “Visual sensitivities to combined chromaticity and luminance differences,”J. Opt. Soc. Am. 39, 808–834 (1949).
    [CrossRef] [PubMed]
  26. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,”J. Opt. Soc. Am. 71, 453–459 (1981).
    [CrossRef] [PubMed]
  27. C. Noorlander, J. J. Koenderink, “Spatial and temporal discrimination ellipsoids in color space,”J. Opt. Soc. Am. 73, 1533–1543 (1983).
    [CrossRef] [PubMed]
  28. M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
    [CrossRef] [PubMed]
  29. K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the perception of motion,” Ophthalmol. Physiol. Opt. 12, 201–206 (1992).
    [CrossRef]
  30. D. C. Van Essen, J. H. R. Maunsell, “Hierarchical organization and functional streams in the visual cortex,” Trends Neurosci. 6, 370–375 (1983).
    [CrossRef]
  31. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
    [PubMed]
  32. P. H. Shiller, “The color-opponent and broad-band channels of the primate visual system,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1990), pp. 127–132.
  33. W. H. Merigan, “P and M pathway specialization in the macaque,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1990), pp. 117–125.
  34. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).
  35. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,”J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  36. D. T. Lindsey, D. Y. Teller, “Influence of variations in edge blur on minimally distinct border judgments: a theoretical and empirical investigation,” J. Opt. Soc. Am. A 6, 446–458 (1989).
    [CrossRef] [PubMed]
  37. A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
    [CrossRef] [PubMed]
  38. R. M. Boynton, “A system of photometry and colorimetry based on cone excitations,” Color Res. Appl. 11, 244–252 (1986).
    [CrossRef]
  39. Q. Zaidi, “Parallel and serial connections between human color mechanisms,” in Applications of Parallel Processing in Vision, J. Brannan, ed. (North-Holland, Amsterdam, 1992), pp. 227–259.

1993 (1)

1992 (4)

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the perception of motion,” Ophthalmol. Physiol. Opt. 12, 201–206 (1992).
[CrossRef]

A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
[CrossRef] [PubMed]

1991 (1)

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

1990 (4)

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Visual Sci. 31, 240 (1990).

A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, “Task-dependent color discrimination,” J. Opt. Soc. Am. A 7, 776–782 (1990).
[CrossRef] [PubMed]

1989 (2)

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,”J. Physiol. (London) 413, 563–593 (1989).

D. T. Lindsey, D. Y. Teller, “Influence of variations in edge blur on minimally distinct border judgments: a theoretical and empirical investigation,” J. Opt. Soc. Am. A 6, 446–458 (1989).
[CrossRef] [PubMed]

1987 (2)

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

1986 (1)

R. M. Boynton, “A system of photometry and colorimetry based on cone excitations,” Color Res. Appl. 11, 244–252 (1986).
[CrossRef]

1985 (2)

J. P. Thomas, “Detection and identification: how are they related?” J. Opt. Soc. Am. A 2, 1457–1467 (1985).
[CrossRef] [PubMed]

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).

1984 (2)

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

1983 (3)

D. C. Van Essen, J. H. R. Maunsell, “Hierarchical organization and functional streams in the visual cortex,” Trends Neurosci. 6, 370–375 (1983).
[CrossRef]

C. Noorlander, J. J. Koenderink, “Spatial and temporal discrimination ellipsoids in color space,”J. Opt. Soc. Am. 73, 1533–1543 (1983).
[CrossRef] [PubMed]

M. Green, “Contrast detection and direction discrimination of drifting gratings,” Vision Res. 23, 281–289 (1983).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–348 (1980).
[CrossRef] [PubMed]

1979 (1)

1978 (1)

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

1949 (1)

Akri, V.

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

Anstis, S.

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

Anstis, S. M.

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Boulton, J. C.

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the perception of motion,” Ophthalmol. Physiol. Opt. 12, 201–206 (1992).
[CrossRef]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

Boynton, R. M.

R. M. Boynton, “A system of photometry and colorimetry based on cone excitations,” Color Res. Appl. 11, 244–252 (1986).
[CrossRef]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,”J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef] [PubMed]

Brainard, D. H.

Brown, W. R. J.

Cavanagh, P.

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

P. Cavanagh, “The contribution of colour to motion,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1990), pp. 151–164.

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Eskew, R. T.

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Visual Sci. 31, 240 (1990).

Favreau, O. E.

Graham, N.

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
[CrossRef]

Green, M.

M. Green, “Contrast detection and direction discrimination of drifting gratings,” Vision Res. 23, 281–289 (1983).
[CrossRef] [PubMed]

Gregory, R. L.

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

Gur, M.

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

Heuts, M. J. G.

Hubel, D. H.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

Judd, D. B.

D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in CIE Proceedings (Bureau Central CIE, Paris, 1951).

Koenderink, J. J.

Krauskopf, J.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Kronauer, R. E.

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Visual Sci. 31, 240 (1990).

Lee, J.

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,”J. Physiol. (London) 413, 563–593 (1989).

Lennie, P.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Lindsey, D. T.

D. Y. Teller, D. T. Lindsey, “Motion at isoluminance: motion dead zones in three-dimensional color space,” J. Opt. Soc. Am. A 10, 1324–1331 (1993).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Influence of variations in edge blur on minimally distinct border judgments: a theoretical and empirical investigation,” J. Opt. Soc. Am. A 6, 446–458 (1989).
[CrossRef] [PubMed]

D. T. Lindsey, “Are there fundamental losses of visual function at isoluminance?” in Annual Meeting, Vol. 15 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 135.

D. Y. Teller, D. T. Lindsey, “Infant color vision: OKN techniques and null plane analysis,” in Infant Vision: Basic and Clinical Research, K. Simons, ed. (Oxford U. Press, New York, 1993).

Livingstone, M. S.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

MacAdam, D. L.

MacLeod, D. I. A.

Maunsell, J. H. R.

D. C. Van Essen, J. H. R. Maunsell, “Hierarchical organization and functional streams in the visual cortex,” Trends Neurosci. 6, 370–375 (1983).
[CrossRef]

Merigan, W. H.

W. H. Merigan, “P and M pathway specialization in the macaque,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1990), pp. 117–125.

Moreland, J. D.

J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Color Deficiencies VI, G. Verriest, ed., Doc. Ophthalmol. Proc. Ser.33 (Junk, The Hague, 1982), pp. 61–66.

J. D. Moreland, D. T. Todd, “Motion photometry and the spectral, sensitivity of colour defectives,” Normal and Pathologic Colour Vision, E. Marre, M. Tost, H. J. Zenker, eds. (Martin Luther Universitat, Halle, Germany, 1987), pp. 39–42.

Mullen, K. T.

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the perception of motion,” Ophthalmol. Physiol. Opt. 12, 201–206 (1992).
[CrossRef]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).

Murphy, B. J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–348 (1980).
[CrossRef] [PubMed]

Nachmias, J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–348 (1980).
[CrossRef] [PubMed]

Noorlander, C.

Pantle, A.

Poirson, A. B.

Pokorny, J.

J. Pokorny, V. C. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 8-1–8-51.

Ramachandran, V. S.

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

Shiller, P. H.

P. H. Shiller, “The color-opponent and broad-band channels of the primate visual system,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1990), pp. 127–132.

Smith, V. C.

J. Pokorny, V. C. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 8-1–8-51.

Stromeyer, C. F.

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Visual Sci. 31, 240 (1990).

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,”J. Physiol. (London) 413, 563–593 (1989).

Teller, D. Y.

D. Y. Teller, D. T. Lindsey, “Motion at isoluminance: motion dead zones in three-dimensional color space,” J. Opt. Soc. Am. A 10, 1324–1331 (1993).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Influence of variations in edge blur on minimally distinct border judgments: a theoretical and empirical investigation,” J. Opt. Soc. Am. A 6, 446–458 (1989).
[CrossRef] [PubMed]

D. Y. Teller, D. T. Lindsey, “Infant color vision: OKN techniques and null plane analysis,” in Infant Vision: Basic and Clinical Research, K. Simons, ed. (Oxford U. Press, New York, 1993).

Thomas, J. P.

Thompson, P. G.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–348 (1980).
[CrossRef] [PubMed]

Todd, D. T.

J. D. Moreland, D. T. Todd, “Motion photometry and the spectral, sensitivity of colour defectives,” Normal and Pathologic Colour Vision, E. Marre, M. Tost, H. J. Zenker, eds. (Martin Luther Universitat, Halle, Germany, 1987), pp. 39–42.

Tyler, C. W.

Van Essen, D. C.

D. C. Van Essen, J. H. R. Maunsell, “Hierarchical organization and functional streams in the visual cortex,” Trends Neurosci. 6, 370–375 (1983).
[CrossRef]

Varner, D. C.

Wandell, B. A.

Watson, A. B.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–348 (1980).
[CrossRef] [PubMed]

Zaidi, Q.

Q. Zaidi, “Parallel and serial connections between human color mechanisms,” in Applications of Parallel Processing in Vision, J. Brannan, ed. (North-Holland, Amsterdam, 1992), pp. 227–259.

Color Res. Appl. (1)

R. M. Boynton, “A system of photometry and colorimetry based on cone excitations,” Color Res. Appl. 11, 244–252 (1986).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Visual Sci. 31, 240 (1990).

J. Neurosci. (1)

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (8)

J. Physiol. (London) (3)

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,”J. Physiol. (London) 413, 563–593 (1989).

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Nature (London) (1)

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

Ophthalmol. Physiol. Opt. (1)

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the perception of motion,” Ophthalmol. Physiol. Opt. 12, 201–206 (1992).
[CrossRef]

Trends Neurosci. (1)

D. C. Van Essen, J. H. R. Maunsell, “Hierarchical organization and functional streams in the visual cortex,” Trends Neurosci. 6, 370–375 (1983).
[CrossRef]

Vision Res. (6)

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–348 (1980).
[CrossRef] [PubMed]

M. Green, “Contrast detection and direction discrimination of drifting gratings,” Vision Res. 23, 281–289 (1983).
[CrossRef] [PubMed]

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

Other (12)

J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Color Deficiencies VI, G. Verriest, ed., Doc. Ophthalmol. Proc. Ser.33 (Junk, The Hague, 1982), pp. 61–66.

J. D. Moreland, D. T. Todd, “Motion photometry and the spectral, sensitivity of colour defectives,” Normal and Pathologic Colour Vision, E. Marre, M. Tost, H. J. Zenker, eds. (Martin Luther Universitat, Halle, Germany, 1987), pp. 39–42.

D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in CIE Proceedings (Bureau Central CIE, Paris, 1951).

J. Pokorny, V. C. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 8-1–8-51.

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

P. Cavanagh, “The contribution of colour to motion,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1990), pp. 151–164.

D. T. Lindsey, “Are there fundamental losses of visual function at isoluminance?” in Annual Meeting, Vol. 15 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 135.

D. Y. Teller, D. T. Lindsey, “Infant color vision: OKN techniques and null plane analysis,” in Infant Vision: Basic and Clinical Research, K. Simons, ed. (Oxford U. Press, New York, 1993).

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
[CrossRef]

P. H. Shiller, “The color-opponent and broad-band channels of the primate visual system,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1990), pp. 127–132.

W. H. Merigan, “P and M pathway specialization in the macaque,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1990), pp. 117–125.

Q. Zaidi, “Parallel and serial connections between human color mechanisms,” in Applications of Parallel Processing in Vision, J. Brannan, ed. (North-Holland, Amsterdam, 1992), pp. 227–259.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Three-dimensional color space and spherical coordinates used to define stimuli. The origin of the space is at a white point. The vertical axis represents luminance variations; the plane orthogonal to it represents the Vλ-defined isoluminant plane. The R/G and tritan axes provide coordinates within the Vλ isoluminant plane. The azimuth parameter (θ) specifies the angular deviation of the axis of stimulus modulation from the R/G axis within the isoluminant plane, the elevation parameter (ϕ) describes its angular deviation above the isoluminant plane, and the vector length (ρ) describes its depth of modulation (combined luminance and chromatic contrast). This figure is modified from one that was used in Ref. 34.

Fig. 2
Fig. 2

Sample psychometric functions. In each case, the abscissa shows vector length (combined luminance and chromatic contrast), whereas the ordinate shows the subject’s percent correct. Left-hand column, subject LM; right-hand column, subject JS; top, detection and direction-of-motion thresholds for luminance-modulated stimuli; middle, detection thresholds for stimuli modulated at various elevations with respect to the Vλ-defined isoluminant plane at azimuths of 135 deg (left, LM) or 90 deg (right, JS); bottom, direction-of-motion thresholds for stimuli modulated at the same azimuths and elevations for the same subjects.

Fig. 3
Fig. 3

Threshold-by-elevation functions for subject LM. The abscissas show variations in elevation, with 0 deg elevation representing the Vλ-isoluminant plane. The ordinates show thresholds in units of vector length (see Appendix A). The thick curves in the top left-hand panel show the locus of 1.36% luminance modulations, which corresponds to this subject’s motion threshold for luminance-modulated stimuli.

Fig. 4
Fig. 4

Threshold-by-elevation functions for subject JS. Conditions are as in Fig. 3.

Fig. 5
Fig. 5

Discrimination ellipses for subject LM. The ordinates show luminance contrast; the abscissas show chromatic contrast in the Vλ-isoluminant plane. Abscissa units are normalized in each panel, such that one unit represents the projection of the chromatic parameter for detection (Table 1) onto the abscissa (see text). The solid parallel lines in the top left-hand panel show the locus of 1.36% luminance modulation. The solid curves show the best-fitting ellipses for each data set.

Fig. 6
Fig. 6

Discrimination ellipses for subject JS. Conditions are as in Fig. 5.

Fig. 7
Fig. 7

Summation squares. Each data set of Figs. 5 and 6 is transformed for best fit to a unit circle by using the parameter values in Table 1. The skew parameter is used to set each individual chromatic axis orthogonal to the luminance axis, and the luminance and chromatic parameters are used to normalize the units on the ordinate and abscissa, respectively. Data from all azimuths and from positive and negative elevations with respect to each subject’s individual isoluminance points are then plotted together. The different symbols show different azimuths, at positive (open symbols) and negative (filled symbols) elevations with respect to the individual isoluminant plane. Left-hand column, subject LM; right-hand column, subject JS; top, detection; bottom, direction-of-motion.

Fig. 8
Fig. 8

MacLeod–Boynton chromaticity diagram.35 Points B, G, and R represent the chromaticity coordinates of the video phosphors; W is the white point. The parallelogram represents the available color gamut at 12 cd/M2.

Tables (2)

Tables Icon

Table 1 Ellipse Parameters

Tables Icon

Table 2 MacLeod–Boynton Chromaticity Coordinates and Luminances of Selected Stimuli

Metrics