Abstract

Under some conditions, moving isoluminant stimuli perceptually slow down or even appear to stop. The purpose of the experiment was to explore the shape of the motion dead zone, the region of color space over which the perception of stopped motion occurs. Subjects viewed a small patch of moving grating (2.3 deg × 2.3 deg, 1.3 cycles/degree, 2.9 deg/s), that was spatially modulated in chromaticity, luminance, or both, presented either foveally or at 2-deg eccentricity. The bars of the grating moved from both edges inward toward the center of the patch. Subjects set perceptual motion boundaries by adjusting the contrast of the luminance-modulation component of the grating. Over most or all of the available gamut of chromatic contrasts, the upper and lower boundaries of the motion dead zone formed two parallel planes near the Vλ-isoluminantplane in three-dimensional color space. The data thus suggest that under the conditions of the experiment, perceptual-motion boundaries are determined largely or entirely by the luminance contrast of the stimulus. The data also provide the most extensive evidence available to date for the additivity of motion photometry.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
    [Crossref]
  2. J. D. Moreland, “A modified anomaloscope using optokinetic nystagmus to define colour matches objectively,” in Colour Vision Deficiencies, V. G. Verriest, ed. (Hilger, Bristol, UK, 1980), pp. 189–191.
  3. J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Color Deficiencies VI, V. G. Verriest, ed., Doc. Ophthalmol. Proc. Ser.33 (Junk, The Hague, 1982), pp. 61–66.
  4. J. D. Moreland, D. T. Todd, “Motion photometry and the spectral sensitivity of colour defectives,” in Normal and Pathologic Colour Vision, E. Marres, M. Tost, H. J. Zenker, eds. (Martin Luther Universität, Halle, Germany, 1987), pp. 39–42.
  5. P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
    [Crossref] [PubMed]
  6. K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
    [Crossref] [PubMed]
  7. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
    [PubMed]
  8. P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
    [Crossref] [PubMed]
  9. A. Gorea, T. V. Papathomas, “Motion processing by chromatic and achromatic visual pathways,” J. Opt. Soc. Am. A 6, 590–602 (1989).
    [Crossref] [PubMed]
  10. D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
    [Crossref] [PubMed]
  11. J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
    [Crossref] [PubMed]
  12. D. T. Lindsey, “Are there fundamental losses of visual function at isoluminance?” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 135.
  13. C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).
  14. A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
    [Crossref] [PubMed]
  15. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).
  16. J. P. C. Southall, ed., Helmholtz’s Treatise on Physiological Optics (Optical Society of America, Rochester, NY., 1924).
  17. W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
    [Crossref] [PubMed]
  18. J. J. Vos, P. L. Walraven, “An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts,” Vision Res. 12, 1327–1342 (1972).
    [Crossref] [PubMed]
  19. J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
    [Crossref] [PubMed]
  20. A. Chaparro, C. F. Stromeyer, R. T. Eskew, E. P. Huang, R. E. Kronauer, “Relative sensitivity of red–green and luminance mechanisms for small spots,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1093 (1991).
  21. N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
    [Crossref]
  22. J. Pokorny, V. C. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986).
  23. G. Wyszeki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  24. S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).
  25. P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
    [Crossref] [PubMed]
  26. P. K. Kaiser, R. L. P. Vimal, W. B. Cowan, H. Hibino, “Nulling of apparent motion as a method for assessing sensation luminance: an additivity test,” Color Res. Appl. 14, 187–191 (1989).
    [Crossref]
  27. D. T. Lindsey, “Linear analysis of eccentricity-dependent changes in the null-based isoluminant plane,” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 166.
  28. D. Y. Teller, D. T. Lindsey, “Infant color vision: OKN techniques and null plane analysis,” in Infant Vision: Basic and Clinical Research, K. Simons, ed. (Oxford U. Press, New York, 1993).
  29. D. T. Lindsey, D. Y. Teller, “Influence of variations in edge blur on minimally distinct border judgments: a theoretical and empirical investigation,” J. Opt. Soc. Am. A 6, 446–458 (1989).
    [Crossref] [PubMed]
  30. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,”J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [Crossref] [PubMed]
  31. J. M. Wolfe, D. A. Owens, “Is accommodation colorblind? Focusing chromatic contours,” Perception 10, 53–62 (1981).
    [Crossref] [PubMed]
  32. E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
    [Crossref] [PubMed]

1993 (1)

1992 (2)

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[Crossref] [PubMed]

A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
[Crossref] [PubMed]

1991 (3)

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[Crossref] [PubMed]

A. Chaparro, C. F. Stromeyer, R. T. Eskew, E. P. Huang, R. E. Kronauer, “Relative sensitivity of red–green and luminance mechanisms for small spots,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1093 (1991).

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

1990 (3)

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[Crossref] [PubMed]

E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
[Crossref] [PubMed]

1989 (4)

A. Gorea, T. V. Papathomas, “Motion processing by chromatic and achromatic visual pathways,” J. Opt. Soc. Am. A 6, 590–602 (1989).
[Crossref] [PubMed]

P. K. Kaiser, R. L. P. Vimal, W. B. Cowan, H. Hibino, “Nulling of apparent motion as a method for assessing sensation luminance: an additivity test,” Color Res. Appl. 14, 187–191 (1989).
[Crossref]

D. T. Lindsey, D. Y. Teller, “Influence of variations in edge blur on minimally distinct border judgments: a theoretical and empirical investigation,” J. Opt. Soc. Am. A 6, 446–458 (1989).
[Crossref] [PubMed]

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[Crossref] [PubMed]

1987 (2)

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[Crossref] [PubMed]

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

1984 (2)

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[Crossref] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

1981 (1)

J. M. Wolfe, D. A. Owens, “Is accommodation colorblind? Focusing chromatic contours,” Perception 10, 53–62 (1981).
[Crossref] [PubMed]

1979 (1)

1978 (1)

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[Crossref]

1972 (1)

J. J. Vos, P. L. Walraven, “An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts,” Vision Res. 12, 1327–1342 (1972).
[Crossref] [PubMed]

Anstis, S.

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

Anstis, S. M.

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[Crossref] [PubMed]

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Boulton, J. C.

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[Crossref] [PubMed]

Boynton, R. M.

Bradley, A.

E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
[Crossref] [PubMed]

Cavanagh, P.

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[Crossref] [PubMed]

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[Crossref] [PubMed]

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Chaparro, A.

A. Chaparro, C. F. Stromeyer, R. T. Eskew, E. P. Huang, R. E. Kronauer, “Relative sensitivity of red–green and luminance mechanisms for small spots,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1093 (1991).

Cowan, W. B.

P. K. Kaiser, R. L. P. Vimal, W. B. Cowan, H. Hibino, “Nulling of apparent motion as a method for assessing sensation luminance: an additivity test,” Color Res. Appl. 14, 187–191 (1989).
[Crossref]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Eskew, R. T.

A. Chaparro, C. F. Stromeyer, R. T. Eskew, E. P. Huang, R. E. Kronauer, “Relative sensitivity of red–green and luminance mechanisms for small spots,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1093 (1991).

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).

Farell, B.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[Crossref] [PubMed]

Favreau, O. E.

Geisler, W. S.

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[Crossref] [PubMed]

Gorea, A.

Graham, N.

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
[Crossref]

Gregory, R. L.

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[Crossref]

Hibino, H.

P. K. Kaiser, R. L. P. Vimal, W. B. Cowan, H. Hibino, “Nulling of apparent motion as a method for assessing sensation luminance: an additivity test,” Color Res. Appl. 14, 187–191 (1989).
[Crossref]

Huang, E. P.

A. Chaparro, C. F. Stromeyer, R. T. Eskew, E. P. Huang, R. E. Kronauer, “Relative sensitivity of red–green and luminance mechanisms for small spots,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1093 (1991).

Hubel, D. H.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

Kaiser, P. K.

P. K. Kaiser, R. L. P. Vimal, W. B. Cowan, H. Hibino, “Nulling of apparent motion as a method for assessing sensation luminance: an additivity test,” Color Res. Appl. 14, 187–191 (1989).
[Crossref]

Krauskopf, J.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[Crossref] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Kronauer, R. E.

A. Chaparro, C. F. Stromeyer, R. T. Eskew, E. P. Huang, R. E. Kronauer, “Relative sensitivity of red–green and luminance mechanisms for small spots,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1093 (1991).

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).

Lennie, P.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Lindsey, D. T.

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[Crossref] [PubMed]

D. T. Lindsey, D. Y. Teller, “Influence of variations in edge blur on minimally distinct border judgments: a theoretical and empirical investigation,” J. Opt. Soc. Am. A 6, 446–458 (1989).
[Crossref] [PubMed]

D. Y. Teller, D. T. Lindsey, “Infant color vision: OKN techniques and null plane analysis,” in Infant Vision: Basic and Clinical Research, K. Simons, ed. (Oxford U. Press, New York, 1993).

D. T. Lindsey, “Linear analysis of eccentricity-dependent changes in the null-based isoluminant plane,” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 166.

D. T. Lindsey, “Are there fundamental losses of visual function at isoluminance?” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 135.

Livingstone, M. S.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

MacLeod, D. I. A.

Mobley, L. A.

Moreland, J. D.

J. D. Moreland, “A modified anomaloscope using optokinetic nystagmus to define colour matches objectively,” in Colour Vision Deficiencies, V. G. Verriest, ed. (Hilger, Bristol, UK, 1980), pp. 189–191.

J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Color Deficiencies VI, V. G. Verriest, ed., Doc. Ophthalmol. Proc. Ser.33 (Junk, The Hague, 1982), pp. 61–66.

J. D. Moreland, D. T. Todd, “Motion photometry and the spectral sensitivity of colour defectives,” in Normal and Pathologic Colour Vision, E. Marres, M. Tost, H. J. Zenker, eds. (Martin Luther Universität, Halle, Germany, 1987), pp. 39–42.

Mullen, K. T.

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[Crossref] [PubMed]

Owens, D. A.

J. M. Wolfe, D. A. Owens, “Is accommodation colorblind? Focusing chromatic contours,” Perception 10, 53–62 (1981).
[Crossref] [PubMed]

Palmer, J.

Pantle, A.

Papathomas, T. V.

Pokorny, J.

J. Pokorny, V. C. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986).

Ramachandran, V. S.

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[Crossref]

Schor, C.

E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
[Crossref] [PubMed]

Smith, V. C.

J. Pokorny, V. C. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986).

Stiles, W. S.

G. Wyszeki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Stromeyer, C. F.

A. Chaparro, C. F. Stromeyer, R. T. Eskew, E. P. Huang, R. E. Kronauer, “Relative sensitivity of red–green and luminance mechanisms for small spots,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1093 (1991).

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).

Switkes, E.

E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
[Crossref] [PubMed]

Teller, D. Y.

J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
[Crossref] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[Crossref] [PubMed]

D. T. Lindsey, D. Y. Teller, “Influence of variations in edge blur on minimally distinct border judgments: a theoretical and empirical investigation,” J. Opt. Soc. Am. A 6, 446–458 (1989).
[Crossref] [PubMed]

D. Y. Teller, D. T. Lindsey, “Infant color vision: OKN techniques and null plane analysis,” in Infant Vision: Basic and Clinical Research, K. Simons, ed. (Oxford U. Press, New York, 1993).

Todd, D. T.

J. D. Moreland, D. T. Todd, “Motion photometry and the spectral sensitivity of colour defectives,” in Normal and Pathologic Colour Vision, E. Marres, M. Tost, H. J. Zenker, eds. (Martin Luther Universität, Halle, Germany, 1987), pp. 39–42.

Tyler, C. W.

Vimal, R. L. P.

P. K. Kaiser, R. L. P. Vimal, W. B. Cowan, H. Hibino, “Nulling of apparent motion as a method for assessing sensation luminance: an additivity test,” Color Res. Appl. 14, 187–191 (1989).
[Crossref]

Vos, J. J.

J. J. Vos, P. L. Walraven, “An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts,” Vision Res. 12, 1327–1342 (1972).
[Crossref] [PubMed]

Walraven, P. L.

J. J. Vos, P. L. Walraven, “An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts,” Vision Res. 12, 1327–1342 (1972).
[Crossref] [PubMed]

Wolfe, J. M.

J. M. Wolfe, D. A. Owens, “Is accommodation colorblind? Focusing chromatic contours,” Perception 10, 53–62 (1981).
[Crossref] [PubMed]

Wyszeki, G.

G. Wyszeki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Color Res. Appl. (1)

P. K. Kaiser, R. L. P. Vimal, W. B. Cowan, H. Hibino, “Nulling of apparent motion as a method for assessing sensation luminance: an additivity test,” Color Res. Appl. 14, 187–191 (1989).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally-opponent,” Invest. Ophthalmol. Vis. Sci. 31, 240 (1990).

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

A. Chaparro, C. F. Stromeyer, R. T. Eskew, E. P. Huang, R. E. Kronauer, “Relative sensitivity of red–green and luminance mechanisms for small spots,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1093 (1991).

J. Neurosci. (1)

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (6)

J. Physiol. (London) (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Nature (London) (1)

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[Crossref]

Perception (1)

J. M. Wolfe, D. A. Owens, “Is accommodation colorblind? Focusing chromatic contours,” Perception 10, 53–62 (1981).
[Crossref] [PubMed]

Psychol. Rev. (1)

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[Crossref] [PubMed]

Vision Res. (6)

J. J. Vos, P. L. Walraven, “An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts,” Vision Res. 12, 1327–1342 (1972).
[Crossref] [PubMed]

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[Crossref] [PubMed]

E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
[Crossref] [PubMed]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[Crossref] [PubMed]

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[Crossref] [PubMed]

Other (11)

D. T. Lindsey, “Are there fundamental losses of visual function at isoluminance?” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 135.

J. P. C. Southall, ed., Helmholtz’s Treatise on Physiological Optics (Optical Society of America, Rochester, NY., 1924).

J. D. Moreland, “A modified anomaloscope using optokinetic nystagmus to define colour matches objectively,” in Colour Vision Deficiencies, V. G. Verriest, ed. (Hilger, Bristol, UK, 1980), pp. 189–191.

J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Color Deficiencies VI, V. G. Verriest, ed., Doc. Ophthalmol. Proc. Ser.33 (Junk, The Hague, 1982), pp. 61–66.

J. D. Moreland, D. T. Todd, “Motion photometry and the spectral sensitivity of colour defectives,” in Normal and Pathologic Colour Vision, E. Marres, M. Tost, H. J. Zenker, eds. (Martin Luther Universität, Halle, Germany, 1987), pp. 39–42.

D. T. Lindsey, “Linear analysis of eccentricity-dependent changes in the null-based isoluminant plane,” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 166.

D. Y. Teller, D. T. Lindsey, “Infant color vision: OKN techniques and null plane analysis,” in Infant Vision: Basic and Clinical Research, K. Simons, ed. (Oxford U. Press, New York, 1993).

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
[Crossref]

J. Pokorny, V. C. Smith, “Colorimetry and color discrimination,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986).

G. Wyszeki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Three-dimensional color-space and spherical coordinates that were used to define stimuli. The origin of the space is at a white point. The vertical axis represents luminance variations; the plane orthogonal to it represents the Vλ-defined isoluminant plane. The R/G and tritan (chromatic) axes provide coordinates within the Vλ-isoluminant plane. The azimuth parameter θ specifies the angular deviation of the axis of stimulus modulation from the R/G axis within the isoluminant plane, the elevation parameter ϕ describes its angular deviation above the isoluminant plane, and the vector length ρ describes its depth of modulation (combined luminance and chromatic contrast). Modified from Ref. 15. (b) Subject’s task. The heavy solid line represents a modulation vector of a fixed length, and the arrows indicate changes of elevation. The subject set the elevations of a series of vectors of different lengths to trace out the boundaries of the perceptual motion dead zone.

Fig. 2
Fig. 2

Stimulus (1.3 c/deg, 3.75 Hz). The bars of the grating moved inward from the edges toward the center of the grating patch. Both foveal and 2-deg peripheral viewing were used.

Fig. 3
Fig. 3

Subject DT, fovea. The abscissas show chromatic contrast; the ordinates show luminance contrast. See text for definition of chromatic-axis units and conversion to cone-contrast values. Data points show the subject’s settings of perceptual-motion boundaries. Filled squares, settings of elevations of modulation vectors of fixed lengths; open squares, settings of length along the luminance axis.

Fig. 4
Fig. 4

Subject DT, 2 deg. Abscissas, ordinates, and symbols are the same as in Fig. 3.

Fig. 5
Fig. 5

Subject CA, fovea. Abscissas, ordinates, and filled squares are the same as in Fig. 3; open circles, settings obtained with potentiometer gain increased by a factor of 2.5 above the optimal value.

Fig. 6
Fig. 6

Subject CA, 2 deg. Abscissas, ordinates, and filled squares are the same as in Fig. 3.

Fig. 7
Fig. 7

Analysis of tilts of individual isoluminant planes with respect to the Vλ-isoluminantplane. The abscissas show the stimulus azimuth; the ordinates show the elevation of each subject’s individual isoluminant plane with respect to the Vλ-isoluminant plane. Top, subject DT; bottom, subject CA.

Metrics