Abstract

The process of setting up problems of wave propagation through turbulence and reducing the expressions to integrals is typically lengthy. Furthermore, to yield useful results the integrals must be evaluated numerically, except for the simplest problems. Here procedures are given for quickly writing an integral expression and easily evaluating it analytically, yielding a series solution that requires only a few terms to yield accurate results. The solution can also be expressed as a finite sum of generalized hypergeometric functions. The approach uses the Rytov approximation and filter functions in the spatial domain to express quantities of interest such as Zernike modes and effects of anisoplanatism for single or counterpropagating or copropagating plane or spherical waves in integral form. The integrals are readily evaluated with Mellin transforms. We illustrate the technique by deriving the tilt jitter of a single wave and the jitter between two waves with outer-scale effects present. It is shown that outer scale has a significant effect on tilt even for large outer-scale sizes. The effect of outer scale on tilt anisoplanatism is less pronounced.

© 1993 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription