Abstract

Theory predicts that retinal image size will vary with wavelength. However, this chromatic difference of magnification (CDM) is likely to be very small (<1% between 400 and 700 nm) under natural viewing conditions. There has been only one attempt to measure CDM experimentally, and the results were inconsistent with optical theory. Using a technique described by Ogle [ Research in Binocular Vision, Hafner, New York ( 1964)], which is sensitive to even small interocular differences in retinal image size, we measured the apparent tilts in the frontoparallel plane induced by interocular differences in wavelength. We obtained the ocular CDM by determining the afocal lens magnification necessary to cancel the apparent frontoparallel plane tilt caused by interocular differences in wavelength. We show that (1) the ocular CDM can be considerably less than theoretical model predictions, (2) the relationship among ΔRx (wavelength-dependent refractive error), CDM, and pupil position is consistent with our theoretical model, (3) CDM increases considerably when an artificial pupil in front of the eye is used, (4) the location of the anterior nodal point of the eye may be inferred from the data, and (5) unlike in the case for ΔRx, large intersubjective differences may exist for CDM. The results suggest caution in the use of artificial pupils experimentally with polychromatic stimuli because of amplification of CDM and concomitant losses of image contrast.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang, L. N. Thibos, A. Bradley, “Relationship between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vision Sci. 68, 456–458 (1991).
    [CrossRef]
  2. A. Bradley, X. Zhang, L. N. Thibos, “Achromatizing the human eye,” Optom. Vision Sci. 68, 608–616 (1991).
    [CrossRef]
  3. A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
    [CrossRef]
  4. L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
    [CrossRef] [PubMed]
  5. R. E. Bedford, G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [CrossRef] [PubMed]
  6. G. Wald, D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947).
    [CrossRef] [PubMed]
  7. P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
    [CrossRef] [PubMed]
  8. H. von Helmholtz, “Chromatic Aberration in the Eye,” in Treatise on Physiological Optics, 3rd ed., J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), Vol. 1, pp. 172–188.
  9. J. Tucker, “The chromatic aberration of the eye between wavelength 200 nm and 2000 nm: some theoretical considerations,” Br. J. Physiol. Opt. 29, 118–125 (1974).
  10. A. G. Bennett, J. Tucker, “Correspondence: chromatic aberration of the eye between 200 and 2000 nm,” Br. J. Physiol. Opt. 30, 132–135 (1975).
  11. L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans”, Appl. Opt. 31, 3594–3600 (1992).
    [CrossRef] [PubMed]
  12. H. Hartridge, “The visual perception of fine detail,” Philos. Trans. R. Soc.London Ser. B 232, 519–671 (1947).
    [CrossRef]
  13. A. Gullstrand, Appendix II.3, “The Optical System of the Eye,” in Treatise on Physiological Optics, 3rd ed., J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), Vol. 1, pp. 350–358.
  14. W. Einthoven, “Stereoskopie durch Farbendifferenz,” Albrecht von Graefes Arch. Ophthalmol. 31, 211–238 (1885).
  15. Y. Le Grand, in Form and Space Vision, revised ed., G. G. Heath, M. Millodot, eds. (Indiana U. Press, Bloomington, Ind., 1967), pp. 5–23.
  16. P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmol. Physiol. Opt. 4, 223–226 (1984).
    [CrossRef]
  17. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 61.
  18. G. A. Fry, “The eye as an optical system,” in Optical Radiation Measurements, C. J. Bartleson, F. Grum, eds. (Academic, Orlando, Fla., 1984), pp. 83–84.
  19. F. W. Campbell, J. Nachmias, J. Jukes, “Spatial-frequency discrimination in human vision,” J. Opt. Soc. Am. 60, 555–559 (1969).
    [CrossRef]
  20. R. D. Freeman, “Alignment detection and resolution as a function of retinal location,” Am. J. Optom. Physiol. Opt. 43, 812–817 (1966).
    [CrossRef]
  21. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
    [CrossRef] [PubMed]
  22. Y. U. Ogboso, H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
    [CrossRef] [PubMed]
  23. B. N. Kishto, “The colour stereoscopic effect,” Vision Res. 5, 313–329 (1965).
    [CrossRef]
  24. P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
    [CrossRef] [PubMed]
  25. L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Visual Sci. 68, 599–607 (1991).
    [CrossRef]
  26. K. N. Ogle, Research in Binocular Vision (Hafner, New York, 1964).
  27. D. Y. Lee, K. J. Cuiffreda, “Short-term adaptation to the induced effect,” Ophthal. Physiol. Opt. 3, 129–135 (1983).
    [CrossRef]
  28. A. Tschermak, “Fortgesetzte Studien uber Binokularsehen,” Arch. Gesante Physiol. 204, 177–202 (1924).
    [CrossRef]
  29. It was verified theoretically and experimentally by Ogle’s study26 and our pilot study that the AFPP tilts are linearly related to interocular difference of magnification (or the magnification of the afocal lens in front of one eye). Therefore, in order to achieve short experimental sessions, we used only one afocal lens in our formal experiments.
  30. J. K. Hovis, “Review of dichoptic color mixing,” Optom. Vision Sci. 66, 181–190 (1989).
    [CrossRef]
  31. R. Blake, D. H. Westendorf, R. Overton, “What is suppressed during binocular rivalry?” Perception 9, 223–231 (1980).
    [CrossRef] [PubMed]
  32. P. A. Cibis, H. Haber, “Anisopia and perception of space,” J. Opt. Soc. Am. 41, 676–683 (1951).
    [CrossRef] [PubMed]
  33. A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth, London, 1984).
  34. R. Held, “The rediscovery of adaptability in the visual system: effect of extrinsic and intrinsic chromatic dispersion,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 69–94.
  35. K. Koh, P. Lennie, D. R. Williams, “Mechanisms of adaptation to chromatic fringes,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 326 (1990).
  36. N. K. Logothetis, P. H. Schiller, E. R. Charles, A. C. Hurlbert, “Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance,” Science 247, 214–217 (1990).
    [CrossRef] [PubMed]
  37. H. Goldmann, R. Hagen, “Zur direkten Messung der Totalbrechkraft des lebenden menschlichen Auges,” Ophthalmologica 104, 15–22 (1942).
    [CrossRef]
  38. A. Sorsby, “The nature of spherical refractive error,” National Institute of Neurological Diseases and Blindness Monogr. 5 (U.S. Government Printing Office, Washington, D.C., 1966).

1992 (1)

1991 (3)

X. Zhang, L. N. Thibos, A. Bradley, “Relationship between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vision Sci. 68, 456–458 (1991).
[CrossRef]

A. Bradley, X. Zhang, L. N. Thibos, “Achromatizing the human eye,” Optom. Vision Sci. 68, 608–616 (1991).
[CrossRef]

L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Visual Sci. 68, 599–607 (1991).
[CrossRef]

1990 (4)

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

K. Koh, P. Lennie, D. R. Williams, “Mechanisms of adaptation to chromatic fringes,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 326 (1990).

N. K. Logothetis, P. H. Schiller, E. R. Charles, A. C. Hurlbert, “Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance,” Science 247, 214–217 (1990).
[CrossRef] [PubMed]

1989 (1)

J. K. Hovis, “Review of dichoptic color mixing,” Optom. Vision Sci. 66, 181–190 (1989).
[CrossRef]

1987 (2)

1986 (1)

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef] [PubMed]

1984 (1)

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmol. Physiol. Opt. 4, 223–226 (1984).
[CrossRef]

1983 (1)

D. Y. Lee, K. J. Cuiffreda, “Short-term adaptation to the induced effect,” Ophthal. Physiol. Opt. 3, 129–135 (1983).
[CrossRef]

1980 (1)

R. Blake, D. H. Westendorf, R. Overton, “What is suppressed during binocular rivalry?” Perception 9, 223–231 (1980).
[CrossRef] [PubMed]

1975 (1)

A. G. Bennett, J. Tucker, “Correspondence: chromatic aberration of the eye between 200 and 2000 nm,” Br. J. Physiol. Opt. 30, 132–135 (1975).

1974 (2)

J. Tucker, “The chromatic aberration of the eye between wavelength 200 nm and 2000 nm: some theoretical considerations,” Br. J. Physiol. Opt. 29, 118–125 (1974).

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

1969 (1)

1966 (1)

R. D. Freeman, “Alignment detection and resolution as a function of retinal location,” Am. J. Optom. Physiol. Opt. 43, 812–817 (1966).
[CrossRef]

1965 (1)

B. N. Kishto, “The colour stereoscopic effect,” Vision Res. 5, 313–329 (1965).
[CrossRef]

1957 (1)

1951 (1)

1947 (2)

G. Wald, D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947).
[CrossRef] [PubMed]

H. Hartridge, “The visual perception of fine detail,” Philos. Trans. R. Soc.London Ser. B 232, 519–671 (1947).
[CrossRef]

1942 (1)

H. Goldmann, R. Hagen, “Zur direkten Messung der Totalbrechkraft des lebenden menschlichen Auges,” Ophthalmologica 104, 15–22 (1942).
[CrossRef]

1924 (1)

A. Tschermak, “Fortgesetzte Studien uber Binokularsehen,” Arch. Gesante Physiol. 204, 177–202 (1924).
[CrossRef]

1885 (1)

W. Einthoven, “Stereoskopie durch Farbendifferenz,” Albrecht von Graefes Arch. Ophthalmol. 31, 211–238 (1885).

Bedell, H. E.

Bedford, R. E.

Bennett, A. G.

A. G. Bennett, J. Tucker, “Correspondence: chromatic aberration of the eye between 200 and 2000 nm,” Br. J. Physiol. Opt. 30, 132–135 (1975).

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth, London, 1984).

Blake, R.

R. Blake, D. H. Westendorf, R. Overton, “What is suppressed during binocular rivalry?” Perception 9, 223–231 (1980).
[CrossRef] [PubMed]

Bradley, A.

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans”, Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

X. Zhang, L. N. Thibos, A. Bradley, “Relationship between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vision Sci. 68, 456–458 (1991).
[CrossRef]

A. Bradley, X. Zhang, L. N. Thibos, “Achromatizing the human eye,” Optom. Vision Sci. 68, 608–616 (1991).
[CrossRef]

L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Visual Sci. 68, 599–607 (1991).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef] [PubMed]

Campbell, F. W.

Campbell, M. C. W.

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef] [PubMed]

Charles, E. R.

N. K. Logothetis, P. H. Schiller, E. R. Charles, A. C. Hurlbert, “Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance,” Science 247, 214–217 (1990).
[CrossRef] [PubMed]

Cibis, P. A.

Cuiffreda, K. J.

D. Y. Lee, K. J. Cuiffreda, “Short-term adaptation to the induced effect,” Ophthal. Physiol. Opt. 3, 129–135 (1983).
[CrossRef]

Einthoven, W.

W. Einthoven, “Stereoskopie durch Farbendifferenz,” Albrecht von Graefes Arch. Ophthalmol. 31, 211–238 (1885).

Freeman, R. D.

R. D. Freeman, “Alignment detection and resolution as a function of retinal location,” Am. J. Optom. Physiol. Opt. 43, 812–817 (1966).
[CrossRef]

Fry, G. A.

G. A. Fry, “The eye as an optical system,” in Optical Radiation Measurements, C. J. Bartleson, F. Grum, eds. (Academic, Orlando, Fla., 1984), pp. 83–84.

Goldmann, H.

H. Goldmann, R. Hagen, “Zur direkten Messung der Totalbrechkraft des lebenden menschlichen Auges,” Ophthalmologica 104, 15–22 (1942).
[CrossRef]

Griffin, D. R.

Gullstrand, A.

A. Gullstrand, Appendix II.3, “The Optical System of the Eye,” in Treatise on Physiological Optics, 3rd ed., J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), Vol. 1, pp. 350–358.

Haber, H.

Hagen, R.

H. Goldmann, R. Hagen, “Zur direkten Messung der Totalbrechkraft des lebenden menschlichen Auges,” Ophthalmologica 104, 15–22 (1942).
[CrossRef]

Hartridge, H.

H. Hartridge, “The visual perception of fine detail,” Philos. Trans. R. Soc.London Ser. B 232, 519–671 (1947).
[CrossRef]

Held, R.

R. Held, “The rediscovery of adaptability in the visual system: effect of extrinsic and intrinsic chromatic dispersion,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 69–94.

Hovis, J. K.

J. K. Hovis, “Review of dichoptic color mixing,” Optom. Vision Sci. 66, 181–190 (1989).
[CrossRef]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef] [PubMed]

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmol. Physiol. Opt. 4, 223–226 (1984).
[CrossRef]

Hurlbert, A. C.

N. K. Logothetis, P. H. Schiller, E. R. Charles, A. C. Hurlbert, “Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance,” Science 247, 214–217 (1990).
[CrossRef] [PubMed]

Jukes, J.

Kishto, B. N.

B. N. Kishto, “The colour stereoscopic effect,” Vision Res. 5, 313–329 (1965).
[CrossRef]

Koh, K.

K. Koh, P. Lennie, D. R. Williams, “Mechanisms of adaptation to chromatic fringes,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 326 (1990).

Le Grand, Y.

Y. Le Grand, in Form and Space Vision, revised ed., G. G. Heath, M. Millodot, eds. (Indiana U. Press, Bloomington, Ind., 1967), pp. 5–23.

Lee, D. Y.

D. Y. Lee, K. J. Cuiffreda, “Short-term adaptation to the induced effect,” Ophthal. Physiol. Opt. 3, 129–135 (1983).
[CrossRef]

Lennie, P.

K. Koh, P. Lennie, D. R. Williams, “Mechanisms of adaptation to chromatic fringes,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 326 (1990).

Logothetis, N. K.

N. K. Logothetis, P. H. Schiller, E. R. Charles, A. C. Hurlbert, “Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance,” Science 247, 214–217 (1990).
[CrossRef] [PubMed]

Nachmias, J.

Ogboso, Y. U.

Ogle, K. N.

K. N. Ogle, Research in Binocular Vision (Hafner, New York, 1964).

Overton, R.

R. Blake, D. H. Westendorf, R. Overton, “What is suppressed during binocular rivalry?” Perception 9, 223–231 (1980).
[CrossRef] [PubMed]

Rabbetts, R. B.

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth, London, 1984).

Schiller, P. H.

N. K. Logothetis, P. H. Schiller, E. R. Charles, A. C. Hurlbert, “Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance,” Science 247, 214–217 (1990).
[CrossRef] [PubMed]

Simonet, P.

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef] [PubMed]

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 61.

Sorsby, A.

A. Sorsby, “The nature of spherical refractive error,” National Institute of Neurological Diseases and Blindness Monogr. 5 (U.S. Government Printing Office, Washington, D.C., 1966).

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans”, Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Visual Sci. 68, 599–607 (1991).
[CrossRef]

A. Bradley, X. Zhang, L. N. Thibos, “Achromatizing the human eye,” Optom. Vision Sci. 68, 608–616 (1991).
[CrossRef]

X. Zhang, L. N. Thibos, A. Bradley, “Relationship between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vision Sci. 68, 456–458 (1991).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
[CrossRef] [PubMed]

Tschermak, A.

A. Tschermak, “Fortgesetzte Studien uber Binokularsehen,” Arch. Gesante Physiol. 204, 177–202 (1924).
[CrossRef]

Tucker, J.

A. G. Bennett, J. Tucker, “Correspondence: chromatic aberration of the eye between 200 and 2000 nm,” Br. J. Physiol. Opt. 30, 132–135 (1975).

J. Tucker, “The chromatic aberration of the eye between wavelength 200 nm and 2000 nm: some theoretical considerations,” Br. J. Physiol. Opt. 29, 118–125 (1974).

van Meeteren, A.

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

von Helmholtz, H.

H. von Helmholtz, “Chromatic Aberration in the Eye,” in Treatise on Physiological Optics, 3rd ed., J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), Vol. 1, pp. 172–188.

Wald, G.

Westendorf, D. H.

R. Blake, D. H. Westendorf, R. Overton, “What is suppressed during binocular rivalry?” Perception 9, 223–231 (1980).
[CrossRef] [PubMed]

Williams, D. R.

K. Koh, P. Lennie, D. R. Williams, “Mechanisms of adaptation to chromatic fringes,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 326 (1990).

Wyszecki, G.

Ye, M.

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans”, Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

X. Zhang, L. N. Thibos, A. Bradley, “Relationship between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vision Sci. 68, 456–458 (1991).
[CrossRef]

A. Bradley, X. Zhang, L. N. Thibos, “Achromatizing the human eye,” Optom. Vision Sci. 68, 608–616 (1991).
[CrossRef]

L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Visual Sci. 68, 599–607 (1991).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Albrecht von Graefes Arch. Ophthalmol. (1)

W. Einthoven, “Stereoskopie durch Farbendifferenz,” Albrecht von Graefes Arch. Ophthalmol. 31, 211–238 (1885).

Am. J. Optom. Physiol. Opt. (1)

R. D. Freeman, “Alignment detection and resolution as a function of retinal location,” Am. J. Optom. Physiol. Opt. 43, 812–817 (1966).
[CrossRef]

Appl. Opt. (1)

Arch. Gesante Physiol. (1)

A. Tschermak, “Fortgesetzte Studien uber Binokularsehen,” Arch. Gesante Physiol. 204, 177–202 (1924).
[CrossRef]

Br. J. Physiol. Opt. (2)

J. Tucker, “The chromatic aberration of the eye between wavelength 200 nm and 2000 nm: some theoretical considerations,” Br. J. Physiol. Opt. 29, 118–125 (1974).

A. G. Bennett, J. Tucker, “Correspondence: chromatic aberration of the eye between 200 and 2000 nm,” Br. J. Physiol. Opt. 30, 132–135 (1975).

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

K. Koh, P. Lennie, D. R. Williams, “Mechanisms of adaptation to chromatic fringes,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 326 (1990).

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (2)

Ophthal. Physiol. Opt. (1)

D. Y. Lee, K. J. Cuiffreda, “Short-term adaptation to the induced effect,” Ophthal. Physiol. Opt. 3, 129–135 (1983).
[CrossRef]

Ophthalmol. Physiol. Opt. (1)

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmol. Physiol. Opt. 4, 223–226 (1984).
[CrossRef]

Ophthalmologica (1)

H. Goldmann, R. Hagen, “Zur direkten Messung der Totalbrechkraft des lebenden menschlichen Auges,” Ophthalmologica 104, 15–22 (1942).
[CrossRef]

Opt. Acta (1)

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

Optom. Vision Sci. (3)

X. Zhang, L. N. Thibos, A. Bradley, “Relationship between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vision Sci. 68, 456–458 (1991).
[CrossRef]

A. Bradley, X. Zhang, L. N. Thibos, “Achromatizing the human eye,” Optom. Vision Sci. 68, 608–616 (1991).
[CrossRef]

J. K. Hovis, “Review of dichoptic color mixing,” Optom. Vision Sci. 66, 181–190 (1989).
[CrossRef]

Optom. Visual Sci. (1)

L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Visual Sci. 68, 599–607 (1991).
[CrossRef]

Perception (1)

R. Blake, D. H. Westendorf, R. Overton, “What is suppressed during binocular rivalry?” Perception 9, 223–231 (1980).
[CrossRef] [PubMed]

Philos. Trans. R. Soc.London Ser. B (1)

H. Hartridge, “The visual perception of fine detail,” Philos. Trans. R. Soc.London Ser. B 232, 519–671 (1947).
[CrossRef]

Science (1)

N. K. Logothetis, P. H. Schiller, E. R. Charles, A. C. Hurlbert, “Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance,” Science 247, 214–217 (1990).
[CrossRef] [PubMed]

Vision Res. (4)

B. N. Kishto, “The colour stereoscopic effect,” Vision Res. 5, 313–329 (1965).
[CrossRef]

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef] [PubMed]

Other (10)

H. von Helmholtz, “Chromatic Aberration in the Eye,” in Treatise on Physiological Optics, 3rd ed., J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), Vol. 1, pp. 172–188.

A. Gullstrand, Appendix II.3, “The Optical System of the Eye,” in Treatise on Physiological Optics, 3rd ed., J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), Vol. 1, pp. 350–358.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 61.

G. A. Fry, “The eye as an optical system,” in Optical Radiation Measurements, C. J. Bartleson, F. Grum, eds. (Academic, Orlando, Fla., 1984), pp. 83–84.

Y. Le Grand, in Form and Space Vision, revised ed., G. G. Heath, M. Millodot, eds. (Indiana U. Press, Bloomington, Ind., 1967), pp. 5–23.

K. N. Ogle, Research in Binocular Vision (Hafner, New York, 1964).

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth, London, 1984).

R. Held, “The rediscovery of adaptability in the visual system: effect of extrinsic and intrinsic chromatic dispersion,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 69–94.

It was verified theoretically and experimentally by Ogle’s study26 and our pilot study that the AFPP tilts are linearly related to interocular difference of magnification (or the magnification of the afocal lens in front of one eye). Therefore, in order to achieve short experimental sessions, we used only one afocal lens in our formal experiments.

A. Sorsby, “The nature of spherical refractive error,” National Institute of Neurological Diseases and Blindness Monogr. 5 (U.S. Government Printing Office, Washington, D.C., 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic drawing of the AFPP apparatus.

Fig. 2
Fig. 2

AFPP tilts plotted as a function of afocal lens magnification (subject AB). Artificial pupils were placed 8 mm in front of the corneal apex of both eyes. Positive tilt values mean that the left side of the tilting plane is adjusted close to the subject and the right side is tilted away. Positive and negative m% values mean that the magnifier is in front of the right eye and the left eye, respectively. The squares are raw data collected under the R/G condition (see the text for a definition). The triangles are raw data collected under the G/R condition. The solid lines are linear regression fits of the raw data.

Fig. 3
Fig. 3

Comparison between AFPP tilts measured with 8° (A) and 4° (B) eccentric rods. Artificial pupils were placed 5.3 mm in front of the corneal apex. The squares are raw data collected under the R/G condition. The triangles are raw data collected under the G/R condition. The solid lines are linear regression fits of the raw data in both A and B.

Fig. 4
Fig. 4

AFPP tilts measured with different filter pairs (subject AB). A: R (650 nm) and G (556 nm) filter pair. The squares are data for red right eye and green left eye (R/G), and the triangles are data with the same filters reversed (G/R). B: R (650 nm) and B (447 nm) filter pair. The diamonds are data for a red filter in front of the right eye and a blue filter in front of the left eye (R/B), and the circles are data with the same filters reversed (B/G). Artificial pupils were placed 8 mm in front of corneal apices. The solid lines are linear regression fits of the raw data in both A and B.

Fig. 5
Fig. 5

CDM measured at different pupil positions. A–E: AFPP tilts for different pupil distances. F: Separation S between pupil and corneal apex. The S values are indicated at the top of each diagram (A–E). The squares are mean values (n = 3) of data collected under the R/G condition. The triangles are mean values of data collected under the G/R condition. The filled symbols are for artificial pupils, and the open symbols are for natural pupils. The solid lines are linear regression fits of the raw data (subject AB).

Fig. 6
Fig. 6

CDM plotted as a function of pupil position for subjects AB (A) and MW (B). In both A and B the open circles are mean values of repeat CDM determinations at the same pupil position. Measurement sessions were repeated at least twice for all the artificial pupil positions and six times for the natural pupil position. The solid lines are the linear regression fits to the raw data. The filled circle in A is the CDM measured from a single eye (see Fig. 7 below).

Fig. 7
Fig. 7

AFPP tilts measured from one eye (right eye of subject AB). Artificial pupils were placed 5.3 mm in front of the corneal apices. All the symbols are mean values (n = 3). The squares are those collected under the R/G condition, the triangles are those collected under the G/G condition, and the diamonds are those collected under the B/G condition. The solid lines are linear regression fits to the raw data.

Fig. 8
Fig. 8

AFPP tilts plotted as a function of ND filter strength (subjects AB and XZ). Natural pupils were used, a 650-nm filter was in front of the left eye, and a 556-nm filter was in front of the right eye. A 0.64% afocal lens was placed in front of the right eye, and a ND filter was in front of the right eye. The triangles are raw data from subject AB, and the crosses are raw data from subject XZ.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CDM = Δ R x X ,

Metrics