Abstract

We measured the monochromatic image quality of the eye across a wide visual field (120°), with natural pupil (4 mm) and accommodation (3 diopters). The method is based on the acquisition and the posterior processing of double-pass aerial images of a point source imaged on the retina, which was kept at a fixed distance from the eye at all retinal eccentricities. The two-dimensional modulation transfer functions (MTF’s) computed from the aerial images show that astigmatism is the dominant monochromatic aberration in both the fovea and the periphery and is also the major cause of variability among individuals. We found a slower decline in optical quality with eccentricity than had been found by previous measurements. Our foveal results are in close agreement with those of Campbell and Gubisch [ J. Physiol. (London) 186, 558– 578 ( 1966)], but off-axis optical quality is much better than found previously by Jennings and Charman [ Am. J. Optom. Physiol. Opt. 55, 582– 590 ( 1978); Vision Res. 21, 445– 454 ( 1981)]. The optical system of the eye seems to follow a wide-angle lens design: the optical quality in the center (fovea) is not particularly good (it is far from the diffraction limit at this pupil size), but the modulation transfer function remains roughly constant for a wide visual field.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ivanoff, Les Aberrations de l’Oeil (Editions de la Revue d’Optique Théorique et Instrumentale, Paris, 1953).
  2. M. F. Flamant, “Etude de la repartition de lumiére dans l’image rétinienne d’une fente,” Rev. Opt. 34, 433–459 (1955).
  3. G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1045 (1962).
    [CrossRef] [PubMed]
  4. J. Krauskopf, “Light distribution in human retinal images,” J. Opt. Soc. Am. 52, 1046–1050 (1962).
    [CrossRef]
  5. J. Santamaría, P. Artal, J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [CrossRef]
  6. P. Artal, R. Navarro, “Simultaneous measurement of two point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992).
    [CrossRef] [PubMed]
  7. A. Arnulf, O. Dupuy, “La transmission des contrastes par le systéme optique de l’oeil et les seuils de contrastes rétiniennes,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).
  8. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).
  9. F. W. Campbell, R. W. Gubisch, “Optical image quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).
  10. R. Röhler, U. Miller, M. Aberl, “Zur Messung der Modulationsübertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–428 (1969).
    [CrossRef]
  11. W. N. Charman, J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).
    [PubMed]
  12. P. Artal, R. Navarro, D. Brainard, S. Galvin, D. R. Williams, “Off-axis optical quality of the eye and retinal sampling,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 1342 (1992).
  13. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
    [CrossRef] [PubMed]
  14. P. Artal, “Calculations of two-dimensional foveal retinal images in real eyes,” J. Opt. Soc. Am. A 7, 1374–1381 (1990).
    [CrossRef] [PubMed]
  15. C. E. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
    [CrossRef]
  16. C. E. Ferree, G. Rand, “Interpretation of refractive conditions in the peripheral field of vision: a further study,” Arch. Ophthalmol. 9, 925–938 (1933).
    [CrossRef]
  17. F. Rempt, J. Hoogerheide, W. P. H. Hoogenboom, “Peripheral retinoscopy and the skiagram,” Ophthalmologica 162, 1–10 (1971).
    [CrossRef] [PubMed]
  18. J. A. M. Jennings, W. N. Charman, “Off-axis image quality in the human eye,” Vision Res. 21, 445–454 (1981).
    [CrossRef] [PubMed]
  19. J. A. M. Jennings, W. N. Charman, “Optical image quality in the peripheral retina,” Am. J. Optom. Physiol. Opt. 55, 582–590 (1978).
    [CrossRef] [PubMed]
  20. A. Arnulf, J. Santamaría, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981).
    [CrossRef]
  21. W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
    [CrossRef] [PubMed]
  22. Y. U. Ogboso, H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
    [CrossRef] [PubMed]
  23. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
    [CrossRef] [PubMed]
  24. D. Sliney, M. Wolbarsht, Safety With Lasers and Other Optical Sources (Plenum, New York, 1980).
  25. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]
  26. G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
    [CrossRef] [PubMed]
  27. J. M. Gorrand, “Reflection characteristics of the human fovea assessed by reflecto-modulometry,” Ophthalmol. Physiol. Opt. 9, 53–60 (1989).
    [CrossRef]
  28. J. J. Vos, J. Walraven, A. van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
    [CrossRef] [PubMed]
  29. R. Navarro, “Incorporation of intraocular scattering in schematic eye models,” J. Opt. Soc. Am. A 2, 1891–1894 (1985).
    [CrossRef] [PubMed]
  30. J. F. Simon, P. M. Denieul, “Influence of the size of test field employed in measurements of the modulation transfer function of the eye,” J. Opt. Soc. Am. 63, 894–896 (1973).
    [CrossRef] [PubMed]
  31. P. Artal, J. Santamaría, J. Bescós, “Phase-transfer function of the human eye and its influence on point-spread function and wave aberration,” J. Opt. Soc. Am. A 5, 1791–1795 (1988).
    [CrossRef] [PubMed]
  32. P. Artal, J. Santamaría, J. Bescós, “Retrieval of wave aberration of human eyes from actual point-spread function data,” J. Opt. Soc. Am. A 5, 1201–1206 (1988).
    [CrossRef] [PubMed]
  33. J. Santamaría, A. Plaza, J. Bescós, “Dynamic recording of the binocular point spread function of the eye optical system,” Opt. Pura Apl. (Madrid) 17, 57–63 (1984).
  34. W. Lotmar, T. Lotmar, “Peripheral astigmatism in the human eye: experimental data and theoretical model predictions,” J. Opt. Soc. Am. 64, 510–513 (1974).
    [CrossRef] [PubMed]
  35. W. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).
  36. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978).
  37. D. L. Still, L. N. Thibos, A. Bradley, “Peripheral image quality is almost as good as central image quality,” Invest. Opththalmol. Vis. Sci. Suppl. 30, 52 (1989).

1992 (2)

P. Artal, R. Navarro, “Simultaneous measurement of two point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992).
[CrossRef] [PubMed]

P. Artal, R. Navarro, D. Brainard, S. Galvin, D. R. Williams, “Off-axis optical quality of the eye and retinal sampling,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 1342 (1992).

1990 (2)

P. Artal, “Calculations of two-dimensional foveal retinal images in real eyes,” J. Opt. Soc. Am. A 7, 1374–1381 (1990).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

1989 (3)

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

J. M. Gorrand, “Reflection characteristics of the human fovea assessed by reflecto-modulometry,” Ophthalmol. Physiol. Opt. 9, 53–60 (1989).
[CrossRef]

D. L. Still, L. N. Thibos, A. Bradley, “Peripheral image quality is almost as good as central image quality,” Invest. Opththalmol. Vis. Sci. Suppl. 30, 52 (1989).

1988 (2)

1987 (2)

1986 (1)

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef] [PubMed]

1985 (1)

1984 (2)

J. Santamaría, A. Plaza, J. Bescós, “Dynamic recording of the binocular point spread function of the eye optical system,” Opt. Pura Apl. (Madrid) 17, 57–63 (1984).

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

1981 (2)

J. A. M. Jennings, W. N. Charman, “Off-axis image quality in the human eye,” Vision Res. 21, 445–454 (1981).
[CrossRef] [PubMed]

A. Arnulf, J. Santamaría, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981).
[CrossRef]

1978 (1)

J. A. M. Jennings, W. N. Charman, “Optical image quality in the peripheral retina,” Am. J. Optom. Physiol. Opt. 55, 582–590 (1978).
[CrossRef] [PubMed]

1976 (3)

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

J. J. Vos, J. Walraven, A. van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
[CrossRef] [PubMed]

W. N. Charman, J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).
[PubMed]

1974 (1)

1973 (1)

1971 (1)

F. Rempt, J. Hoogerheide, W. P. H. Hoogenboom, “Peripheral retinoscopy and the skiagram,” Ophthalmologica 162, 1–10 (1971).
[CrossRef] [PubMed]

1969 (1)

R. Röhler, U. Miller, M. Aberl, “Zur Messung der Modulationsübertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–428 (1969).
[CrossRef]

1966 (1)

F. W. Campbell, R. W. Gubisch, “Optical image quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

1965 (1)

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

1962 (2)

1960 (1)

A. Arnulf, O. Dupuy, “La transmission des contrastes par le systéme optique de l’oeil et les seuils de contrastes rétiniennes,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).

1955 (1)

M. F. Flamant, “Etude de la repartition de lumiére dans l’image rétinienne d’une fente,” Rev. Opt. 34, 433–459 (1955).

1933 (1)

C. E. Ferree, G. Rand, “Interpretation of refractive conditions in the peripheral field of vision: a further study,” Arch. Ophthalmol. 9, 925–938 (1933).
[CrossRef]

1931 (1)

C. E. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
[CrossRef]

Aberl, M.

R. Röhler, U. Miller, M. Aberl, “Zur Messung der Modulationsübertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–428 (1969).
[CrossRef]

Arnulf, A.

A. Arnulf, J. Santamaría, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981).
[CrossRef]

A. Arnulf, O. Dupuy, “La transmission des contrastes par le systéme optique de l’oeil et les seuils de contrastes rétiniennes,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).

Artal, P.

Bedell, H. E.

Bescós, J.

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978).

Bradley, A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

D. L. Still, L. N. Thibos, A. Bradley, “Peripheral image quality is almost as good as central image quality,” Invest. Opththalmol. Vis. Sci. Suppl. 30, 52 (1989).

Brainard, D.

P. Artal, R. Navarro, D. Brainard, S. Galvin, D. R. Williams, “Off-axis optical quality of the eye and retinal sampling,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 1342 (1992).

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “Optical image quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1045 (1962).
[CrossRef] [PubMed]

Charman, W. N.

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

J. A. M. Jennings, W. N. Charman, “Off-axis image quality in the human eye,” Vision Res. 21, 445–454 (1981).
[CrossRef] [PubMed]

J. A. M. Jennings, W. N. Charman, “Optical image quality in the peripheral retina,” Am. J. Optom. Physiol. Opt. 55, 582–590 (1978).
[CrossRef] [PubMed]

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

W. N. Charman, J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).
[PubMed]

Delori, F. C.

Denieul, P. M.

Dupuy, O.

A. Arnulf, O. Dupuy, “La transmission des contrastes par le systéme optique de l’oeil et les seuils de contrastes rétiniennes,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).

Ferree, C. E.

C. E. Ferree, G. Rand, “Interpretation of refractive conditions in the peripheral field of vision: a further study,” Arch. Ophthalmol. 9, 925–938 (1933).
[CrossRef]

C. E. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
[CrossRef]

Flamant, M. F.

M. F. Flamant, “Etude de la repartition de lumiére dans l’image rétinienne d’une fente,” Rev. Opt. 34, 433–459 (1955).

Galvin, S.

P. Artal, R. Navarro, D. Brainard, S. Galvin, D. R. Williams, “Off-axis optical quality of the eye and retinal sampling,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 1342 (1992).

Gorrand, J. M.

J. M. Gorrand, “Reflection characteristics of the human fovea assessed by reflecto-modulometry,” Ophthalmol. Physiol. Opt. 9, 53–60 (1989).
[CrossRef]

Green, D. G.

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “Optical image quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

Hardy, C.

C. E. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
[CrossRef]

Hoogenboom, W. P. H.

F. Rempt, J. Hoogerheide, W. P. H. Hoogenboom, “Peripheral retinoscopy and the skiagram,” Ophthalmologica 162, 1–10 (1971).
[CrossRef] [PubMed]

Hoogerheide, J.

F. Rempt, J. Hoogerheide, W. P. H. Hoogenboom, “Peripheral retinoscopy and the skiagram,” Ophthalmologica 162, 1–10 (1971).
[CrossRef] [PubMed]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Howland, H. C.

Ivanoff, A.

A. Ivanoff, Les Aberrations de l’Oeil (Editions de la Revue d’Optique Théorique et Instrumentale, Paris, 1953).

Jennings, J. A. M.

J. A. M. Jennings, W. N. Charman, “Off-axis image quality in the human eye,” Vision Res. 21, 445–454 (1981).
[CrossRef] [PubMed]

J. A. M. Jennings, W. N. Charman, “Optical image quality in the peripheral retina,” Am. J. Optom. Physiol. Opt. 55, 582–590 (1978).
[CrossRef] [PubMed]

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

W. N. Charman, J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).
[PubMed]

Krauskopf, J.

Lotmar, T.

Lotmar, W.

Miller, U.

R. Röhler, U. Miller, M. Aberl, “Zur Messung der Modulationsübertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–428 (1969).
[CrossRef]

Navarro, R.

Ogboso, Y. U.

Pflibsen, K. P.

Plaza, A.

J. Santamaría, A. Plaza, J. Bescós, “Dynamic recording of the binocular point spread function of the eye optical system,” Opt. Pura Apl. (Madrid) 17, 57–63 (1984).

Rand, G.

C. E. Ferree, G. Rand, “Interpretation of refractive conditions in the peripheral field of vision: a further study,” Arch. Ophthalmol. 9, 925–938 (1933).
[CrossRef]

C. E. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
[CrossRef]

Rempt, F.

F. Rempt, J. Hoogerheide, W. P. H. Hoogenboom, “Peripheral retinoscopy and the skiagram,” Ophthalmologica 162, 1–10 (1971).
[CrossRef] [PubMed]

Röhler, R.

R. Röhler, U. Miller, M. Aberl, “Zur Messung der Modulationsübertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–428 (1969).
[CrossRef]

Santamaría, J.

Simon, J. F.

Sliney, D.

D. Sliney, M. Wolbarsht, Safety With Lasers and Other Optical Sources (Plenum, New York, 1980).

Smith, W.

W. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

D. L. Still, L. N. Thibos, A. Bradley, “Peripheral image quality is almost as good as central image quality,” Invest. Opththalmol. Vis. Sci. Suppl. 30, 52 (1989).

Thibos, L. N.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

D. L. Still, L. N. Thibos, A. Bradley, “Peripheral image quality is almost as good as central image quality,” Invest. Opththalmol. Vis. Sci. Suppl. 30, 52 (1989).

van Blokland, G. J.

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef] [PubMed]

van Meeteren, A.

J. J. Vos, J. Walraven, A. van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
[CrossRef] [PubMed]

Vos, J. J.

J. J. Vos, J. Walraven, A. van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
[CrossRef] [PubMed]

Walraven, J.

J. J. Vos, J. Walraven, A. van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
[CrossRef] [PubMed]

Walsh, G.

Westheimer, G.

Williams, D. R.

P. Artal, R. Navarro, D. Brainard, S. Galvin, D. R. Williams, “Off-axis optical quality of the eye and retinal sampling,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 1342 (1992).

Wolbarsht, M.

D. Sliney, M. Wolbarsht, Safety With Lasers and Other Optical Sources (Plenum, New York, 1980).

Zhang, X.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

J. A. M. Jennings, W. N. Charman, “Optical image quality in the peripheral retina,” Am. J. Optom. Physiol. Opt. 55, 582–590 (1978).
[CrossRef] [PubMed]

Appl. Opt. (2)

Arch. Ophthalmol. (2)

C. E. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
[CrossRef]

C. E. Ferree, G. Rand, “Interpretation of refractive conditions in the peripheral field of vision: a further study,” Arch. Ophthalmol. 9, 925–938 (1933).
[CrossRef]

Br. J. Physiol. Opt. (1)

W. N. Charman, J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).
[PubMed]

C. R. Acad. Sci. (Paris) (1)

A. Arnulf, O. Dupuy, “La transmission des contrastes par le systéme optique de l’oeil et les seuils de contrastes rétiniennes,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

P. Artal, R. Navarro, D. Brainard, S. Galvin, D. R. Williams, “Off-axis optical quality of the eye and retinal sampling,” Invest. Ophthalmol. Vis. Sci. Suppl. 33, 1342 (1992).

Invest. Opththalmol. Vis. Sci. Suppl. (1)

D. L. Still, L. N. Thibos, A. Bradley, “Peripheral image quality is almost as good as central image quality,” Invest. Opththalmol. Vis. Sci. Suppl. 30, 52 (1989).

J. Opt. (Paris) (1)

A. Arnulf, J. Santamaría, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (7)

J. Physiol. (London) (2)

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

F. W. Campbell, R. W. Gubisch, “Optical image quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

Ophthalmol. Physiol. Opt. (1)

J. M. Gorrand, “Reflection characteristics of the human fovea assessed by reflecto-modulometry,” Ophthalmol. Physiol. Opt. 9, 53–60 (1989).
[CrossRef]

Ophthalmologica (1)

F. Rempt, J. Hoogerheide, W. P. H. Hoogenboom, “Peripheral retinoscopy and the skiagram,” Ophthalmologica 162, 1–10 (1971).
[CrossRef] [PubMed]

Opt. Pura Apl. (Madrid) (1)

J. Santamaría, A. Plaza, J. Bescós, “Dynamic recording of the binocular point spread function of the eye optical system,” Opt. Pura Apl. (Madrid) 17, 57–63 (1984).

Rev. Opt. (1)

M. F. Flamant, “Etude de la repartition de lumiére dans l’image rétinienne d’une fente,” Rev. Opt. 34, 433–459 (1955).

Vision Res. (6)

R. Röhler, U. Miller, M. Aberl, “Zur Messung der Modulationsübertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–428 (1969).
[CrossRef]

J. A. M. Jennings, W. N. Charman, “Off-axis image quality in the human eye,” Vision Res. 21, 445–454 (1981).
[CrossRef] [PubMed]

J. J. Vos, J. Walraven, A. van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976).
[CrossRef] [PubMed]

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

Other (4)

D. Sliney, M. Wolbarsht, Safety With Lasers and Other Optical Sources (Plenum, New York, 1980).

W. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978).

A. Ivanoff, Les Aberrations de l’Oeil (Editions de la Revue d’Optique Théorique et Instrumentale, Paris, 1953).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for recording and digital processing of the double-pass aerial image of a point source (see text for a detailed description).

Fig. 2
Fig. 2

Complete set of aerial PSF’s for four subjects (SB, RN, PA, and GO). The axis represents retinal eccentricity in degrees (negative means nasal and positive means temporal). Each plot contains 10 contour curves with a linear interval of 10% of the peak value, ranging from 5% to 95% of that maximum value. At the top is a scale of the plots showing the extent of 1° of visual field.

Fig. 3
Fig. 3

Two-dimensional MTF’s for subject PA in four eccentricities. Horizontal and vertical axes are in spatial-frequency coordinates (cycles per degree). Contour-curve levels are the same as in Fig. 2.

Fig. 4
Fig. 4

Average MTF’s at six eccentricities. The average has been taken over four subjects and two hemiretinas. The resulting contour curves tend to show either a diamond or a circular shape.

Fig. 5
Fig. 5

Percent Strehl ratios computed for the complete set of data. Symbols represent individual values; the continuous curve represents the average.

Fig. 6
Fig. 6

Comparison with data from Jennings and Charman. The open symbols—triangles and stars—represent widths at half-height of the aerial line-spread functions from Jennings and Charman for 4-mm-pupil free accommodation19 and 7.5-mm-pupil paralized accommodation,18 respectively. Filled triangles correspond to our data. A rough estimate of retinal optical resolution, computed from the Strehl ratio, is also included (filled circles with continuous curve). All sets of data are plotted versus retinal eccentricity, in units of arcmin on a log scale.

Fig. 7
Fig. 7

Two examples, from data for subject PA, illustrating typical measuring errors. Two vertical cuts of two-dimensional MTF’s are plotted on a log scale, the upper curve corresponding to the fovea in an astigmatism-free direction and the lower curve corresponding to 30° of eccentricity with strong astigmatism. The bars represent the standard error of the mean.

Fig. 8
Fig. 8

Foveal data (filled symbols) and the results of curve fitting to the sum of two exponentials (continuous curves). Three experimental sets of MTF data are plotted on a logarithmic scale: average radial profile (circles), upper (minimum elongation, squares) bounds, and lower (maximum elongation, triangles) bounds. Data from Campbell and Gubisch9 for a 3.8-mm pupil (open stars) are also included.

Fig. 9
Fig. 9

Average radial profiles (symbols) and results of curve fitting (continuous curves) for six eccentricities. Results for 10° and 40° have been left out for the sake of clarity.

Fig. 10
Fig. 10

Four examples of SD’s showing interorientation (filled symbols) and intersubject (open symbols) variabilities of the MTF in the fovea (circles) and in the periphery—30° temporal retina— (squares). SD’s are in modulation-increment units, plotted on a logarithmic scale as a function of spatial frequency.

Fig. 11
Fig. 11

Modulation transfer as a function of spatial frequency and eccentricity. This figure represents average data (radial profiles). The contour curves are on a log10 scale, and the spacing is 0.2 log unit.

Fig. 12
Fig. 12

Modulation as a function of retinal eccentricity for five different spatial frequencies. Filled symbols and continuous curves represent average experimental data (radial profiles); open symbols and dashed curves show the resulting modulation values computed from the theoretical two-dimensional function presented in Table 2.

Tables (2)

Tables Icon

Table 1 Best Least-Squares Fit (Exponential Plus Exponential) to the Radial Profilesa

Tables Icon

Table 2 Modulation Transfer as a Function of Retinal Eccentricity (θ) and Spatial Frequency (f)a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MTF ( f ) = ( 1 C ) exp ( A f ) + C exp ( B f )

Metrics